Xian-you Wang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1863257/xian-you-wang-publications-by-year.pdf

Version: 2024-04-18

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

432 13,004 59 82 g-index

446 15,217 6.7 avg, IF 6.73 L-index

#	Paper	IF	Citations
432	Regeneration and performance of LiFePO4 with Li2CO3 and FePO4 as raw materials recovered from spent LiFePO4 batteries. <i>Materials Chemistry and Physics</i> , 2022 , 279, 125750	4.4	1
431	Architecture and performance of Si/C microspheres assembled by nano-Si via electro-spray technology as stability-enhanced anodes for lithium-ion batteries. <i>Journal of Alloys and Compounds</i> , 2022 , 903, 163940	5.7	1
430	Highly stable 3D hierarchical manganese sulfide multi-layer nanoflakes with excellent electrochemical performances for supercapacitor electrodes. <i>Journal of Alloys and Compounds</i> , 2022 , 894, 162390	5.7	9
429	Creating anion defects on hollow CoxNi1-xO concave with dual binding sites as high-efficiency sulfur reduction reaction catalyst. <i>Chemical Engineering Journal</i> , 2022 , 427, 132024	14.7	2
428	Molten salt synthesis of KCl-preintercalated CN nanosheets with abundant pyridinic-N as a superior anode with 10 cycles in lithium ion battery. <i>Journal of Colloid and Interface Science</i> , 2022 , 606, 537-54	3 ^{9.3}	2
427	Flexible SnTe/carbon nanofiber membrane as a free-standing anode for high-performance lithium-ion and sodium-ion batteries. <i>Journal of Colloid and Interface Science</i> , 2022 , 605, 231-240	9.3	6
426	In-situ synthesis of highly graphitized and Fe/N enriched carbon tubes as catalytic mediums for promoting multi-step conversion of lithium polysulfides. <i>Carbon</i> , 2022 , 192, 418-428	10.4	3
425	Si/C composite embedded nano-Si in 3D porous carbon matrix and enwound by conductive CNTs as anode of lithium-ion batteries. <i>Sustainable Materials and Technologies</i> , 2022 , 32, e00410	5.3	1
424	Green preparation and supercapacitive behaviors of calcium carbide derived porous carbon based on solvent-free mechanochemical route. <i>Journal of Energy Storage</i> , 2022 , 51, 104473	7.8	O
423	A facile and high-effective oxygen defect engineering for improving electrochemical performance of lithium-rich manganese-based cathode materials. <i>Journal of Power Sources</i> , 2022 , 536, 231456	8.9	O
422	Boosting Electrochemical Performance of Lithium-Rich Manganese-Based Cathode Materials through a Dual Modification Strategy with Defect Designing and Interface Engineering. <i>ACS Applied Materials & Designious Amp; Interfaces</i> , 2021 , 13, 53974-53985	9.5	2
421	Atomically Dispersed and O, N-Coordinated Mn-Based Catalyst for Promoting the Conversion of Polysulfides in LiS-Based Li-S Battery. <i>ACS Applied Materials & Dispersed</i> , 13, 54113-54123	9.5	2
420	Design and Facile Synthesis of Highly Efficient and Durable Bifunctional Oxygen Electrocatalyst Fe-N/C Nanocages for Rechargeable Zinc-Air Batteries. <i>ACS Applied Materials & Discrete Section</i> 2021, 13, 54032-54042	9.5	2
419	Efficient Mutual-Compensating Li-Loss Strategy toward Highly Conductive Garnet Ceramics for Li-Metal Solid-State Batteries. <i>ACS Applied Materials & Discrete Samp</i> ; Interfaces, 2021 , 13, 56054-56063	9.5	3
418	Unveiling the Role and Mechanism of Nb Doping and In Situ Carbon Coating on Improving Lithium-Ion Storage Characteristics of Rod-Like Morphology FeF D .33H O. <i>Small</i> , 2021 , e2105193	11	1
417	Investigation of ZIF-derived Co, N co-doped porous carbon-supported Au nanoparticles as an effective catalyst for borohydride electrooxidation. <i>New Journal of Chemistry</i> , 2021 , 45, 21206-21214	3.6	0
416	Turning commercial MnO (85lwt%) into high-crystallized K-doped LiMnO cathode with superior structural stability by a low-temperature molten salt method. <i>Journal of Colloid and Interface Science</i> , 2021 , 608, 1377-1383	9.3	O

415	Potassium storage mechanism of In2S3/C nanofibers as the anode for potassium ion batteries. <i>Electrochimica Acta</i> , 2021 , 400, 139461	6.7	3
414	Exploring the Efficient Na/K Storage Mechanism and Vacancy Defect-Boosted Li Diffusion Based on VSe/MoSe Heterostructure Engineering. <i>ACS Applied Materials & Diffusion Based on VSe/MoSe Heterostructure Engineering</i> .	9.5	8
413	Titanium Glycolate Nanorods with Unsaturated Sites as Multifunctional Layers for Advanced Lithium Bulfur Batteries. <i>ACS Applied Energy Materials</i> , 2021 , 4, 3670-3680	6.1	2
412	Enhancing Reaction Kinetics of Sulfur-Containing Species in Li-S Batteries by Quantum Dot-Level Tin Oxide Hydroxide Catalysts. <i>ACS Applied Energy Materials</i> , 2021 , 4, 4935-4944	6.1	2
411	Nanosilver-Promoted Trimetallic Nito Mn Perovskite Fluorides for Advanced Aqueous Supercabatteries with Pseudocapacitive Multielectrons Phase Conversion Mechanisms. <i>Advanced Functional Materials</i> , 2021 , 31, 2101353	15.6	11
410	Highly Effective Trapping-Conversion Interface Based on Nickel-Modified Versatile Carbon Skeleton Enabled High-Performance Li-S Battery. <i>ACS Applied Materials & District Action</i> , 13, 1637	7 4 :563	8 3
409	Suppressing the Voltage Decay Based on a Distinct Stacking Sequence of Oxygen Atoms for Li-Rich Cathode Materials. <i>ACS Applied Materials & Acs Applied & Acs Ap</i>	9.5	6
408	One-Step Synthesis of ZnNCN Nanoparticles with Adjustable Composition for an Advanced Anode in Lithium Ion Battery. <i>ACS Applied Energy Materials</i> , 2021 , 4, 4290-4296	6.1	1
407	NiMoO4 Nanosheets Anchored on N?S Doped Carbon Clothes with Hierarchical Structure as a Bidirectional Catalyst toward Accelerating Polysulfides Conversion for Li?S Battery. <i>Advanced Functional Materials</i> , 2021 , 31, 2101285	15.6	28
406	Tailoring bulk Li+ ion diffusion kinetics and surface lattice oxygen activity for high-performance lithium-rich manganese-based layered oxides. <i>Energy Storage Materials</i> , 2021 , 37, 509-520	19.4	26
405	CoreBhell Structure S@PPy/CB with High Electroconductibility to Effective Confinement Polysulfide Shuttle Effect for Advanced LithiumBulfur Batteries. <i>Energy & Description (Confidence of Confidence of Confidence</i>	14879	O
404	Rational Design and Performance of Ansode Materials Based on Si/SiOx/C Particles Anchored on Graphene Sheets. <i>ACS Applied Energy Materials</i> , 2021 , 4, 4966-4975	6.1	6
403	Zn, Co, and Fe Tridoped N-C Core-Shell Nanocages as the High-Efficiency Oxygen Reduction Reaction Electrocatalyst in Zinc-Air Batteries. <i>ACS Applied Materials & Discourse (Materials & Discours)</i> , 13, 28324-26	8333	13
402	Porous nitrogen-doped Sn/C film as free-standing anodes for lithium ion batteries. <i>Applied Surface Science</i> , 2021 , 551, 149246	6.7	11
401	LiS In Situ Grown on Three-Dimensional Porous Carbon Architecture with Electron/Ion Channels and Dual Active Sites as Cathodes of Li-S Batteries. <i>ACS Applied Materials & Discrete Amp; Interfaces</i> , 2021 , 13, 32968-32977	9.5	4
400	Dual cationic modified high Ni-low co layered oxide cathode with a heteroepitaxial interface for high energy-density lithium-ion batteries. <i>Chemical Engineering Journal</i> , 2021 , 416, 129118	14.7	15
399	Improved high-voltage performance of LiNi0.87Co0.1Al0.03O2 by Li+-conductor coating. <i>Chemical Engineering Journal</i> , 2021 , 407, 126442	14.7	22
398	Semi-interpenetrating gel polymer electrolyte based on PVDF-HFP for lithium ion batteries. <i>Journal of Applied Polymer Science</i> , 2021 , 138, 49993	2.9	8

397	Highly Effective Direct Dehydrogenation of Propane to Propylene by Microwave Catalysis at Low Temperature over CoBn/NC Microwave Catalyst. <i>ChemCatChem</i> , 2021 , 13, 1009-1022	5.2	5
396	Hollow urchin-like Al-doped ⊞MnO2☑ as advanced sulfur host for high-performance lithium-sulfur batteries. <i>Materials Letters</i> , 2021 , 285, 129135	3.3	5
395	YolkBhell P3-Type K0.5[Mn0.85Ni0.1Co0.05]O2: A Low-Cost Cathode for Potassium-Ion Batteries. Energy and Environmental Materials, 2021 ,	13	15
394	nHighly N/O co-doped carbon nanospheres for symmetric supercapacitors application with high specific energy. <i>Journal of Energy Storage</i> , 2021 , 33, 102152	7.8	7
393	Insight into the performance of the mesoporous structure SiOx nanoparticles anchored on carbon fibers as anode material of lithium-ion batteries. <i>Journal of Electroanalytical Chemistry</i> , 2021 , 880, 1147	9 8 1	8
392	Electrospun Na doped Li2TiSiO5/C nanofibers with outstanding lithium-storage performance. <i>Applied Surface Science</i> , 2021 , 541, 148388	6.7	4
391	Synthesis and electrochemical properties of P2Na2/3[Ni1/3Mn2/3]O2 microspheres as cathode materials for sodium-ion batteries. <i>Journal of Alloys and Compounds</i> , 2021 , 859, 157768	5.7	4
390	Intercalation-type MoP and WP nanodots with abundant phase interface embedded in carbon microflower for enhanced Li storage and reaction kinetics. <i>Electrochimica Acta</i> , 2021 , 365, 137354	6.7	8
389	FeSe2 nanoparticle embedded in 3D honeycomb-like N-doped carbon architectures coupled with electrolytes engineering boost superior potassium ion storage. <i>Electrochimica Acta</i> , 2021 , 366, 137381	6.7	6
388	Carbon-supported Au-doped N-C-coated CoFe alloy nanocomposite electrocatalysts for BH4 electrooxidation. <i>Ionics</i> , 2021 , 27, 1233-1241	2.7	
387	N-Doped carbon-coated Co2P-supported Au nanocomposite as the anode catalyst for borohydride electrooxidation. <i>New Journal of Chemistry</i> , 2021 , 45, 14779-14788	3.6	O
386	Rapid preparation and performances of garnet electrolyte with sintering aids for solid-state LiB battery. <i>Ceramics International</i> , 2021 , 47, 18196-18204	5.1	10
385	Multiple Strategies toward Advanced P2-Type Layered NaxMnO2 for Low-Cost Sodium-Ion Batteries. <i>ACS Applied Energy Materials</i> , 2021 , 4, 8183-8192	6.1	5
384	Ionic conductivity and interfacial stability of Li6PS5Cllli6.5La3Zr1.5Ta0.5O12 composite electrolyte. <i>Journal of Solid State Electrochemistry</i> , 2021 , 25, 2513	2.6	O
383	Structure Design and Performance of the Graphite/Silicon/Carbon Nanotubes/Carbon (GSCC) Composite as the Anode of a Li-Ion Battery. <i>Energy & Energy & Energ</i>	4.1	3
382	Improving the Cycling Stability of Li-Rich Mn-Based Cathodes through Surface Modification of VOPO4. <i>Energy & Documents</i> , 2021, 35, 14148-14156	4.1	2
381	Fe, Co-bimetallic doped C3N4 with in-situ derived carbon tube as sulfur host for anchoring and catalyzing polysulfides in lithium-sulfur battery. <i>Journal of Alloys and Compounds</i> , 2021 , 873, 159883	5.7	8
380	Encapsulating Nanoscale Silicon inside Carbon Fiber as Flexible Self-Supporting Anode Material for Lithium-Ion Battery. <i>ACS Applied Energy Materials</i> , 2021 , 4, 8529-8537	6.1	4

(2020-2021)

379	Towards high-performance lithium-sulfur battery: Investigation on the capability of metalloid to regulate polysulfides. <i>Chemical Engineering Journal</i> , 2021 , 430, 132677	14.7	3	
378	Preparation and Performance of Eu3+-Doped BaSnF4-Based Solid-State Electrolytes for Room-Temperature Fluoride-Ion Batteries. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 12978-1	12989	1	
377	Facile Preparation and Performances of Ni, Co, and Al Layered Double Hydroxides for Application in High-Performance Asymmetric Supercapacitors. <i>ACS Applied Energy Materials</i> , 2021 , 4, 9384-9392	6.1	4	
376	Fully encapsulated Sb2Se3/Sb/C nanofibers: Towards high-rate, ultralong-lifespan lithium-ion batteries. <i>Journal of Alloys and Compounds</i> , 2021 , 874, 159961	5.7	7	
375	Double bond effects induced by iron selenide as immobilized homogenous catalyst for efficient polysulfides capture. <i>Chemical Engineering Journal</i> , 2021 , 421, 129770	14.7	6	
374	Enhancing the electrochemical performances of Li2S-based cathode through conductive interface design and addition of mixed conductive materials. <i>Electrochimica Acta</i> , 2021 , 396, 139238	6.7	1	
373	A heterogeneous FeP-CoP electrocatalyst for expediting sulfur redox in high-specific-energy lithium-sulfur batteries. <i>Electrochimica Acta</i> , 2021 , 397, 139275	6.7	4	
372	Multiple roles of titanium carbide in performance boosting: Mediator, anchor and electrocatalyst for polysulfides redox regulation. <i>Chemical Engineering Journal</i> , 2021 , 426, 130744	14.7	5	
371	Catalytic-conversion behavior of MoS2 for polysulfides by nickel introduction and phosphorous-doping in advanced lithium-sulfur batteries. <i>Chemical Engineering Journal</i> , 2021 , 425, 131	64 6 .7	O	
370	Engineering a TiNbO-Based Electrocatalyst on a Flexible Self-Supporting Sulfur Cathode for Promoting Li-S Battery Performance ACS Applied Materials & amp; Interfaces, 2021,	9.5	1	
369	Porous NiCoS Nanoneedle Arrays with Highly Efficient Electrocatalysis Anchored on Carbon Cloths as Self-Supported Hosts for High-Loading Li-S Batteries. <i>ACS Applied Materials & Damp; Interfaces</i> , 2020 , 12, 57975-57986	9.5	13	
368	The preparation and performances of lithium sulfide (Li2S)-oriented cathode composite via carbothermic reduction. <i>Journal of Alloys and Compounds</i> , 2020 , 835, 155421	5.7	5	
367	Three-Dimensional Walnut-Like, Hierarchically Nanoporous Carbon Microspheres: One-Pot Synthesis, Activation, and Supercapacitive Performance. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 8024-8036	8.3	17	
366	A freestanding metallic tin-modified and nitrogen-doped carbon skeleton as interlayer for lithium-sulfur battery. <i>Chemical Engineering Journal</i> , 2020 , 399, 125723	14.7	34	
365	Carbon-supported Au modified N-doped carbon-coated FeMn alloy nanoparticle composites for BH4lælectrocatalytic oxidation. <i>New Journal of Chemistry</i> , 2020 , 44, 9870-9877	3.6	2	
364	Electrochemical performance and structural stability of air-stable Na0.67Ni0.33Mn0.67-xTixO2 cathode materials for high-performance sodium-ion batteries. <i>Chemical Engineering Journal</i> , 2020 , 399, 125725	14.7	14	
363	Synthesis of SnS/C nanofibers membrane as self-standing anode for high-performance sodium-ion batteries by a smart process. <i>Journal of Alloys and Compounds</i> , 2020 , 843, 155899	5.7	21	
362	Flower-like Bi4Ti3O12/Carbon nanotubes as reservoir and promoter of polysulfide for lithium sulfur battery. <i>Journal of Power Sources</i> , 2020 , 453, 227896	8.9	26	

361	High electrocatalytic activity of carbon-supported nickel hydroxide-doped platinum nanocatalysts for BH4lelectrooxidation. <i>Ionics</i> , 2020 , 26, 5133-5141	2.7	
360	Electrochemical Energy Storage Behavior of Na0.44MnO2 in Aqueous Zinc-Ion Battery. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 ,	8.3	5
359	Preparation and Li/Na ion storage performance of raspberry-like hierarchical FeF3\(\textit{D}\).33H2O micro-sized spheres with controllable morphology. <i>Journal of Alloys and Compounds</i> , 2020 , 829, 154215	5.7	5
358	Preparation and performances of the modified gel composite electrolyte for application of quasi-solid-state lithium sulfur battery. <i>Chemical Engineering Journal</i> , 2020 , 389, 124300	14.7	34
357	P-doped ternary transition metal oxide as electrode material of asymmetric supercapacitor. <i>Journal of Energy Storage</i> , 2020 , 28, 101248	7.8	17
356	Polyfurfuryl alcohol assisted synthesis of Na2FePO4F/C nanocomposites as cathode material of sodium ion batteries. <i>Journal of Electroanalytical Chemistry</i> , 2020 , 867, 114187	4.1	3
355	Spherical Gr/Si/GO/C Composite as High-Performance Anode Material for Lithium-Ion Batteries. <i>Energy & Description</i> 2020, 34, 7639-7647	4.1	16
354	Controlled fabrication and performances of single-core/dual-shell hierarchical structure m-TNO@TiC@NC anode composite for lithium-ion batteries. <i>Electrochimica Acta</i> , 2020 , 341, 136072	6.7	6
353	Improving the Structure and Cycling Stability of Ni-Rich Layered Cathodes by Dual Modification of Yttrium Doping and Surface Coating. <i>ACS Applied Materials & Doping and Surface Coating </i>	9.5	44
352	N-Doped carbon-supported Au-modified NiFe alloy nanoparticle composite catalysts for BH4 electrooxidation. <i>New Journal of Chemistry</i> , 2020 , 44, 6940-6946	3.6	3
351	Hierarchically structured spherical nickel cobalt layered double hydroxides particles grown on biomass porous carbon as an advanced electrode for high specific energy asymmetric supercapacitor. <i>Journal of Energy Storage</i> , 2020 , 30, 101454	7.8	19
350	Nd3+ doped BaSnF4 solid electrolyte for advanced room-temperature solid-state fluoride ion batteries. <i>Ceramics International</i> , 2020 , 46, 20521-20528	5.1	5
349	Enhanced electrochemical behaviors of carbon felt electrode using redox-active electrolyte for all-solid-state supercapacitors. <i>Journal of Colloid and Interface Science</i> , 2020 , 577, 12-18	9.3	10
348	Boosting the charge transfer of LiTiSiO using nitrogen-doped carbon nanofibers: towards high-rate, long-life lithium-ion batteries. <i>Nanoscale</i> , 2020 , 12, 19702-19710	7.7	4
347	Rapid sintering method for highly conductive Li7La3Zr2O12 ceramic electrolyte. <i>Ceramics International</i> , 2020 , 46, 10917-10924	5.1	71
346	Kinetically elevated redox conversion of polysulfides of lithium-sulfur battery using a separator modified with transition metals coordinated g-C3N4 with carbon-conjugated. <i>Chemical Engineering Journal</i> , 2020 , 385, 123905	14.7	43
345	Porous silicongraphenedarbon composite as high performance anode material for lithium ion batteries. <i>Journal of Energy Storage</i> , 2020 , 27, 101075	7.8	17
344	Preparation and application of poly(ethylene oxide)-based all solid-state electrolyte with a walnut-like SiO2 as nano-fillers. <i>Journal of Applied Polymer Science</i> , 2020 , 137, 48810	2.9	12

(2020-2020)

343	SnF2-based fluoride ion electrolytes MSnF4 (M = Ba, Pb) for the application of room-temperature solid-state fluoride ion batteries. <i>Journal of Alloys and Compounds</i> , 2020 , 819, 152983	5.7	13	
342	Multifunctional reaction interfaces for capture and boost conversion of polysulfide in lithium-sulfur batteries. <i>Electrochimica Acta</i> , 2020 , 334, 135658	6.7	14	
341	Electrospun SnSe/C nanofibers as binder-free anode for lithiumIbn and sodium-ion batteries. <i>Journal of Power Sources</i> , 2020 , 449, 227559	8.9	48	
340	TiNb2O7 nano-particle decorated carbon cloth as flexible self-support anode material in lithium-ion batteries. <i>Electrochimica Acta</i> , 2020 , 332, 135469	6.7	22	
339	Lithium Sulfide-Embedded Three-Dimensional Heterogeneous Micro-/Mesoporous Interwoven Carbon Architecture as the Cathode of Lithium Bulfur Batteries. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 351-361	8.3	8	
338	LiMnPO4 nanoplates with optimal crystal orientation in situ anchored on the expanded graphite for high-rate and long-life lithium ion batteries. <i>Electrochimica Acta</i> , 2020 , 359, 136945	6.7	7	
337	Polyaniline-Derived Carbon Heterostructure as Redox Mediator of Li2S Oxidation and Polysulfide Immobilizer for High-Performance LithiumBulfur Cathode. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 16659-16670	8.3	5	
336	Carbon supported PdBn nanoparticle eletrocatalysts for efficient borohydride electrooxidation. <i>New Journal of Chemistry</i> , 2020 , 44, 13472-13479	3.6	1	
335	Superior Na-Storage Properties of Nickel-Substituted NaFeSiO@C Microspheres Encapsulated with the -Synthesized Alveolation-like Carbon Matrix. <i>ACS Applied Materials & District Amplied Materials & District Materials & D</i>	58 ² 3 ⁵ 48	72 ³	
334	Development of coreShell structured Mo2C@BN as novel microwave catalysts for highly effective direct decomposition of H2S into H2 and S at low temperature. <i>Catalysis Science and Technology</i> , 2020 , 10, 6769-6779	5.5	4	
333	Enhanced cycling stability of nickel-rich layered oxide by tantalum doping. <i>Journal of Power Sources</i> , 2020 , 473, 228597	8.9	29	
332	Suppressing H2H3 phase transition in high Nilbw Co layered oxide cathode material by dual modification. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 21306-21316	13	46	
331	The electrochemical storage mechanism of an InS/C nanofiber anode for high-performance Li-ion and Na-ion batteries. <i>Nanoscale</i> , 2020 , 12, 20337-20346	7.7	12	
330	Band-Gap Engineering of FeF310.33H2O Nanosphere via Ni Doping as a High-Performance Lithium-Ion Battery Cathode. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 15651-15660	8.3	10	
329	Electrospun Ta-doped TiO2/C nanofibers as a high-capacity and long-cycling anode material for Li-ion and K-ion batteries. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 20666-20676	13	24	
328	The effects of dual modification on structure and performance of P2-type layered oxide cathode for sodium-ion batteries. <i>Chemical Engineering Journal</i> , 2020 , 384, 123234	14.7	20	
327	Synergetic restriction to polysulfides by hollow FePO4 nanospheres wrapped by reduced graphene oxide for lithiumBulfur battery. <i>Electrochimica Acta</i> , 2020 , 329, 135135	6.7	19	
326	Free-standing ternary metallic sulphides/Ni/C-nanofiber anodes for high-performance lithium-ion capacitors. <i>Journal of Energy Chemistry</i> , 2020 , 42, 108-115	12	27	

325	AlPO4-coated P2-type hexagonal Na0.7MnO2.05 as high stability cathode for sodium ion battery. <i>Chemical Engineering Journal</i> , 2020 , 382, 122697	14.7	10
324	Flower-like ZnO modified with BiOI nanoparticles as adsorption/catalytic bifunctional hosts for lithiumBulfur batteries. <i>Journal of Energy Chemistry</i> , 2020 , 51, 21-29	12	18
323	In situ self-assembly of SiO2 coating Co3O4/graphene aerogel and its enhanced electrochemical performance for supercapacitors. <i>Journal of Materials Science: Materials in Electronics</i> , 2019 , 30, 17218-	1 72 26	2
322	Internal in situ gel polymer electrolytes for high-performance quasi-solid-state lithium ion batteries. <i>Journal of Solid State Electrochemistry</i> , 2019 , 23, 2785-2792	2.6	8
321	A flexible tysonite-type La0.95Ba0.05F2.95@PEO-based composite electrolyte for the application of advanced fluoride ion battery. <i>Journal of Energy Storage</i> , 2019 , 25, 100886	7.8	9
320	Tellurium Surface Doping to Enhance the Structural Stability and Electrochemical Performance of Layered Ni-Rich Cathodes. <i>ACS Applied Materials & Discrete States (Nature States)</i> 11, 40022-40033	9.5	51
319	Modified Chestnut-Like Structure Silicon Carbon Composite as Anode Material for Lithium-Ion Batteries. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 10415-10424	8.3	51
318	Carbon-supported Ni(OH)2 nanospheres decorated with Au nanoparticles: a promising catalyst for BH4[ælectrooxidation. <i>Ionics</i> , 2019 , 25, 5153-5161	2.7	1
317	Sb2S3 embedded in carbonBilicon oxide nanofibers as high-performance anode materials for lithium-ion and sodium-ion batteries. <i>Journal of Power Sources</i> , 2019 , 435, 226762	8.9	46
316	Architecture and Performance of the Novel Sulfur Host Material Based on TiO Microspheres for Lithium-Sulfur Batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 22439-22448	9.5	45
315	A high-performance gel polymer electrolyte based on poly(vinylidene fluoride)/thermoplastic polyurethane/poly(propylene carbonate) for lithium-ion batteries. <i>Journal of Chemical Sciences</i> , 2019 , 131, 1	1.8	8
314	Improved cycle and air stability of P3-Na0.65Mn0.75Ni0.25O2 electrode for sodium-ion batteries coated with metal phosphates. <i>Chemical Engineering Journal</i> , 2019 , 372, 1066-1076	14.7	31
313	Preparation and performances of novel Na2FeSiO4/C composite with more stable polymorph as cathode material of sodium-ion batteries. <i>Journal of Power Sources</i> , 2019 , 430, 120-129	8.9	13
312	A tin disulfide nanosheet wrapped with interconnected carbon nanotube networks for application of lithium sulfur batteries. <i>Electrochimica Acta</i> , 2019 , 313, 151-160	6.7	26
311	Gel electrolytes based on polyacrylonitrile/thermoplastic polyurethane/polystyrene for lithium-ion batteries. <i>Ionics</i> , 2019 , 25, 3673-3682	2.7	14
310	Atomically tailoring vacancy defects in FeF2.2(OH)0.8 toward ultra-high rate and long-life Li/Na-ion batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 14180-14191	13	1
309	Atomic-Scale Dynamics and Storage Performance of Na/K on FeF Nanosheet. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 17425-17434	9.5	5
308	Improvement of the Cycling Stability of Li-Rich Layered Mn-Based Oxide Cathodes Modified by Nanoscale LaPO4 Coating. <i>ACS Applied Energy Materials</i> , 2019 , 2, 3532-3541	6.1	34

307	Carbon-supported Pd-Co nanocatalyst as highly active anodic electrocatalyst for direct borohydride/hydrogen peroxide fuel cells. <i>Journal of Solid State Electrochemistry</i> , 2019 , 23, 1739-1748	2.6	6
306	Heterogeneous dual-wrapped architecture of hollow SiOx/MoS2-CNTs nanohybrids as anode materials for lithium-ion batteries. <i>Journal of Electroanalytical Chemistry</i> , 2019 , 842, 50-58	4.1	10
305	Carbon-supported Co(OH)2 coated with Au nanoparticle composites as an efficient catalyst for BH4lelectrooxidation. <i>New Journal of Chemistry</i> , 2019 , 43, 7694-7700	3.6	О
304	High-performance P2-Type Fe/Mn-based oxide cathode materials for sodium-ion batteries. <i>Electrochimica Acta</i> , 2019 , 312, 45-53	6.7	18
303	Bowl-like double carbon layer architecture of hollow carbon@FePO4@reduced graphene oxide composite as high-performance cathodes for sodium and lithium ion batteries. <i>Journal of Alloys and Compounds</i> , 2019 , 795, 34-44	5.7	14
302	Preparation and Performance of the Heterostructured Material with a Ni-Rich Layered Oxide Core and a LiNiMnO-like Spinel Shell. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 16556-16566	9.5	20
301	Perovskite-type La0.56Li0.33TiO3 as an effective polysulfide promoter for stable lithium ulfur batteries in lean electrolyte conditions. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 10293-10302	13	35
300	Rectangular Tunnel-Structured Na0.4MnO2 as a Promising Cathode Material Withstanding a High Cutoff Voltage for Na-Ion Batteries. <i>ChemElectroChem</i> , 2019 , 6, 1711-1721	4.3	6
299	Honeycomb-like nitrogen and sulfur dual-doped hierarchical porous biomass carbon bifunctional interlayer for advanced lithium-sulfur batteries. <i>Chemical Engineering Journal</i> , 2019 , 355, 478-486	14.7	83
298	Free-standing SnS/C nanofiber anodes for ultralong cycle-life lithium-ion batteries and sodium-ion batteries. <i>Energy Storage Materials</i> , 2019 , 17, 1-11	19.4	136
297	Studies on the Kinetic Behaviors of Na Ions Insertion/Extraction in NaFeSiO/C Cathode Material at Various Desodiation States. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 31980-31990	9.5	13
296	Graphene/antimonene/graphene heterostructure: A potential anode for sodium-ion batteries. <i>Carbon</i> , 2019 , 153, 767-775	10.4	28
295	Synthesis and characterization of Na0.44MnO2 nanorods/graphene composite as cathode materials for sodium-ion batteries. <i>Journal of Central South University</i> , 2019 , 26, 1510-1520	2.1	24
294	Na2FePO4F/C composite synthesized via a simple solid state route for lithium-ion batteries. Journal of Central South University, 2019, 26, 1521-1529	2.1	2
293	Mesoporous aluminium manganese cobalt oxide with pentahedron structures for energy storage devices. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 18417-18427	13	36
293		13 5.5	36
	devices. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 18417-18427 Development of MgCo2O4BaCO3 composites as microwave catalysts for the highly effective direct decomposition of NO under excess O2 at a low temperature. <i>Catalysis Science and</i>		

289	Carbon-Coated Yttria Hollow Spheres as Both Sulfur Immobilizer and Catalyst of Polysulfides Conversion in Lithium-Sulfur Batteries. <i>ACS Applied Materials & District Computer Science</i> , 2019, 11, 42104-42113	9.5	32
288	Atomistic insights into the screening and role of oxygen in enhancing the Li conductivity of LiPSO solid-state electrolytes. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 26358-26367	3.6	7
287	TiO2-Sn/C composite nanofibers with high-capacity and long-cycle life as anode materials for sodium ion batteries. <i>Journal of Alloys and Compounds</i> , 2019 , 772, 314-323	5.7	21
286	Core-shell structured MoS2@Mesoporous hollow carbon spheres nanocomposite for supercapacitors applications with enhanced capacitance and energy density. <i>Electrochimica Acta</i> , 2019 , 298, 630-639	6.7	33
285	Tin disulfide embedded in N-, S-doped carbon nanofibers as anode material for sodium-ion batteries. <i>Chemical Engineering Journal</i> , 2019 , 359, 1244-1251	14.7	70
284	Preparation and performance of poly(ethylene oxide)-based composite solid electrolyte for all solid-state lithium batteries. <i>Journal of Applied Polymer Science</i> , 2019 , 136, 47498	2.9	20
283	Improving Electrochemical Performances of Li-Rich Layered Mn-Based Oxide Cathodes through K2Cr2O7 Solution Treatment. <i>ACS Applied Energy Materials</i> , 2019 , 2, 1563-1571	6.1	11
282	The novel P3-type layered Na0.65Mn0.75Ni0.25O2 oxides doped by non-metallic elements for high performance sodium-ion batteries. <i>Chemical Engineering Journal</i> , 2019 , 360, 139-147	14.7	43
281	A novel facile synthesis of hollow multi-component Li1.4Mn0.6Co0.2Ni0.2O2+Bpheres via controlling the porosity of precursor. <i>Journal of Alloys and Compounds</i> , 2018 , 744, 809-820	5.7	8
280	Cr-doped Fe2F5H2O with open framework structure as a high performance cathode material of sodium-ion batteries. <i>Electrochimica Acta</i> , 2018 , 269, 479-489	6.7	23
279	Suppressing the Polysulfide Shuttle Effect by Heteroatom-Doping for High-Performance Lithium Bulfur Batteries. ACS Sustainable Chemistry and Engineering, 2018, 6, 7545-7557	8.3	46
278	Synergetic Effects of Multifunctional Composites with More Efficient Polysulfide Immobilization and Ultrahigh Sulfur Content in Lithium-Sulfur Batteries. <i>ACS Applied Materials & Damp; Interfaces</i> , 2018 , 10, 13562-13572	9.5	36
277	Ag nanoparticles promoted LiFePO 4 F nanospheres cathode with superior cycling stability for lithium-ion batteries. <i>Journal of Alloys and Compounds</i> , 2018 , 751, 12-19	5.7	5
276	Nearly monodispersed LiFePO4F nanospheres as cathode material for lithium ion batteries. <i>Journal of Solid State Electrochemistry</i> , 2018 , 22, 1995-2002	2.6	7
275	Atomistic Insights into FeF Nanosheet: An Ultrahigh-Rate and Long-Life Cathode Material for Li-Ion Batteries. <i>ACS Applied Materials & Date of Science (Lange of Science)</i> 10, 3142-3151	9.5	8
274	Iron Fluoride Packaged into 3D Order Mesoporous Carbons as High-Performance Sodium-Ion Battery Cathode Material. <i>Journal of the Electrochemical Society</i> , 2018 , 165, A89-A96	3.9	15
273	Nitrogen-doped activated microporous carbon spheres as a sulfur matrix for advanced lithium-sulfur batteries. <i>Journal of Alloys and Compounds</i> , 2018 , 740, 687-694	5.7	27
272	Graphene-embedded LiMn0.8Fe0.2PO4 composites with promoted electrochemical performance for lithium ion batteries. <i>Electrochimica Acta</i> , 2018 , 276, 134-141	6.7	13

(2018-2018)

271	Construction and characterizations of hollow carbon microsphere@polypyrrole composite for the high performance supercapacitor. <i>Journal of Energy Storage</i> , 2018 , 18, 62-71	7.8	14
270	Effects of Nanofiber Architecture and Antimony Doping on the Performance of Lithium-Rich Layered Oxides: Enhancing Lithium Diffusivity and Lattice Oxygen Stability. <i>ACS Applied Materials & Materials</i>	9.5	51
269	Mesoporous LiTi2(PO4)3/C composite with trace amount of carbon as high-performance electrode materials for lithium ion batteries. <i>Journal of Alloys and Compounds</i> , 2018 , 749, 1019-1027	5.7	7
268	Porous activated carbon derived from Chinese-chive for high energy hybrid lithium-ion capacitor. Journal of Power Sources, 2018 , 398, 128-136	8.9	44
267	Revealing the doping mechanism and effect of cobalt on the HTB-type iron fluoride: A first-principle study. <i>Journal of Physics and Chemistry of Solids</i> , 2018 , 123, 87-96	3.9	5
266	Facile synthesis and electrochemical properties of high lithium ionic conductivity Li1.7Al0.3Ti1.7Si0.4P2.6O12 ceramic solid electrolyte. <i>Journal of Alloys and Compounds</i> , 2018 , 756, 103-	1517	23
265	Synchronous Tailoring Surface Structure and Chemical Composition of Li-Rich[layered Oxide for High-Energy Lithium-Ion Batteries. <i>Advanced Functional Materials</i> , 2018 , 28, 1803392	15.6	107
264	The Influences of Surface Coating Layers on the Properties of Layered/Spinel Heterostructured Li-Rich Cathode Material. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 12969-12979	8.3	25
263	Dual stabilized architecture of hollow Si@TiO2@C nanospheres as anode of high-performance Li-ion battery. <i>Chemical Engineering Journal</i> , 2018 , 351, 269-279	14.7	66
262	Spherical FeF3 0 .33H2O/MWCNTs nanocomposite with mesoporous structure as cathode material of sodium ion battery. <i>Journal of Energy Chemistry</i> , 2018 , 27, 573-581	12	19
261	Template-Free Synthesis of SbS Hollow Microspheres as Anode Materials for Lithium-Ion and Sodium-Ion Batteries. <i>Nano-Micro Letters</i> , 2018 , 10, 12	19.5	71
260	MnO2 nanosheets grown on the internal/external surface of N-doped hollow porous carbon nanospheres as the sulfur host of advanced lithium-sulfur batteries. <i>Chemical Engineering Journal</i> , 2018 , 335, 831-842	14.7	118
259	Hollow Silicon I in Nanospheres Encapsulated by N-Doped Carbon as Anode Materials for Lithium-Ion Batteries. <i>ACS Applied Nano Materials</i> , 2018 , 1, 6989-6999	5.6	41
258	Nitrogen-Doped TiO-C Composite Nanofibers with High-Capacity and Long-Cycle Life as Anode Materials for Sodium-Ion Batteries. <i>Nano-Micro Letters</i> , 2018 , 10, 71	19.5	47
257	Flowerlike Mesoporous FeF3D.33H2O with 3D Hierarchical Nanostructure: Size-Controlled Green-Synthesis and Application as Cathodes for Na-Ion Batteries. <i>ACS Applied Energy Materials</i> , 2018 , 1, 7153-7163	6.1	17
256	MoS2-Coated N-doped Mesoporous Carbon Spherical Composite Cathode and CNT/Chitosan Modified Separator for Advanced Lithium Sulfur Batteries. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 16828-16837	8.3	58
255	Multifunctional Heterostructures for Polysulfide Suppression in High-Performance Lithium-Sulfur Cathode. <i>Small</i> , 2018 , 14, e1803134	11	57
254	Na2Ti3O7/C Nanofibers for High-Rate and Ultralong-Life Anodes in Sodium-Ion Batteries. <i>ChemElectroChem</i> , 2018 , 5, 3498-3505	4.3	18

253	The hollow mesoporous silicon nanobox dually encapsulated by SnO2/C as anode material of lithium ion battery. <i>Electrochimica Acta</i> , 2018 , 288, 61-70	6.7	34
252	Hollow porous FeF3ID.33H2O microspheres by AlPO4 coating as a cathode material of Na-ion batteries. <i>Journal of Energy Storage</i> , 2018 , 18, 103-111	7.8	11
251	Carbon-Supported Bimetallic PlatinumIron Nanocatalysts: Application in Direct Borohydride/Hydrogen Peroxide Fuel Cell. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 8142-81	4 <mark>8</mark> .3	17
250	Layer-by-layered SnS2/graphene hybrid nanosheets via ball-milling as promising anode materials for lithium ion batteries. <i>Electrochimica Acta</i> , 2018 , 269, 452-461	6.7	61
249	Manganese Dioxide/Ant-Nest-Like Hierarchical Porous Carbon Composite with Robust Supercapacitive Performances. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 7362-7371	8.3	13
248	Hydrothermal preparation and performance of LiFePO by using LiPO recovered from spent cathode scraps as Li source. <i>Waste Management</i> , 2018 , 78, 208-216	8.6	29
247	Antifungal Activity of Trans-2-Hexenal Against Penicillium cyclopium by a Membrane Damage Mechanism. <i>Journal of Food Biochemistry</i> , 2017 , 41, e12289	3.3	21
246	Gel electrolytes based on poly(vinylidenefluoride-co-hexafluoropropylene)/thermoplastic polyurethane/poly(methyl methacrylate) with in situ SiO2 for polymer lithium batteries. <i>RSC Advances</i> , 2017 , 7, 3240-3248	3.7	43
245	Ti-doped Fe1Ti F3D.33H2O/C nanocomposite as an ultrahigh rate capability cathode materials of lithium ion batteries. <i>Journal of Alloys and Compounds</i> , 2017 , 702, 372-380	5.7	20
244	Honeycomb-like Nitrogen and Sulfur Dual-Doped Hierarchical Porous Biomass-Derived Carbon for Lithium-Sulfur Batteries. <i>ChemSusChem</i> , 2017 , 10, 1803-1812	8.3	126
243	Expanded graphite@SnO2@ polyaniline Composite with Enhanced Performance as Anode Materials for Lithium Ion Batteries. <i>Electrochimica Acta</i> , 2017 , 240, 63-71	6.7	54
242	Photovoltaic Monocrystalline Silicon Waste-Derived Hierarchical Silicon/Flake Graphite/Carbon Composite as Low-Cost and High-Capacity Anode for Lithium-Ion Batteries. <i>ChemistrySelect</i> , 2017 , 2, 3479-3489	1.8	20
241	Iron fluoride microspheres by titanium dioxide surface modification as high capacity cathode of Li-ion batteries. <i>Journal of Alloys and Compounds</i> , 2017 , 719, 331-340	5.7	22
240	Hierarchical porous carbon modified with ionic surfactants as efficient sulfur hosts for the high-performance lithium-sulfur batteries. <i>Chemical Engineering Journal</i> , 2017 , 313, 404-414	14.7	77
239	Hydrothermal synthesis of antimony oxychlorides submicron rods as anode materials for lithium-ion batteries and sodium-ion batteries. <i>Electrochimica Acta</i> , 2017 , 254, 246-254	6.7	34
238	Li-Rich Layered/Spinel Heterostructured Special Morphology Cathode Material with High Rate Capability for Li-lon Batteries. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 11005-11015	8.3	25
237	Cornlike Ordered Mesoporous Silicon Particles Modified by Nitrogen-Doped Carbon Layer for the Application of Li-Ion Battery. <i>ACS Applied Materials & Company States</i> , 2017, 9, 32829-32839	9.5	52
236	Hierarchically Structured Lithium-Rich Layered Oxide with Exposed Active {010} Planes as High-Rate-Capability Cathode for Lithium-Ion Batteries. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 8970-8981	8.3	32

(2016-2017)

235	Gel Polymer Electrolyte Based on Poly(vinylidene fluoride)/Thermoplastic Polyurethane/Polyacrylonitrile by the Electrospinning Technique. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 19140-19146	3.8	19	
234	Spinel/Layered Heterostructured Lithium-Rich Oxide Nanowires as Cathode Material for High-Energy Lithium-Ion Batteries. <i>ACS Applied Materials & Date Section</i> , 9, 41210-41223	9.5	54	
233	The effects of morphology and size on performances of Li2FeSiO4/C cathode materials. <i>Journal of Alloys and Compounds</i> , 2017 , 721, 683-690	5.7	17	
232	LiNiCoMnO with Controllable Morphology and Size for High Performance Lithium-Ion Batteries. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 25358-25368	9.5	59	
231	Industrial waste silica preparation of silicon carbide composites and their applications in lithium-ion battery anode. <i>Journal of Alloys and Compounds</i> , 2017 , 695, 100-105	5.7	23	
230	A Freestanding Hollow Carbon Nanosphere as Efficient Sulfur Hosts for High-Performance LithiumBulfur Batteries. <i>Nanoscience and Nanotechnology Letters</i> , 2017 , 9, 1180-1184	0.8	3	
229	A Novel High-performance Electrospun Thermoplastic Polyurethane/Poly(vinylidene fluoride)/Polystyrene Gel Polymer Electrolyte for Lithium Batteries. <i>Acta Chimica Slovenica</i> , 2017 , 64, 95-101	1.9	6	
228	A high-performance electrospun thermoplastic polyurethane/poly(vinylidene fluoride-co-hexafluoropropylene) gel polymer electrolyte for Li-ion batteries. <i>Journal of Solid State Electrochemistry</i> , 2016 , 20, 255-262	2.6	21	
227	The FeF3D.33H2O/C nanocomposite with open mesoporous structure as high-capacity cathode material for lithium/sodium ion batteries. <i>Journal of Alloys and Compounds</i> , 2016 , 689, 945-951	5.7	32	
226	Improved Electrochemical Performance of Spherical Li2FeSiO4/C Cathode Materials via Mn Doping for Lithium-Ion Batteries. <i>Electrochimica Acta</i> , 2016 , 222, 1354-1364	6.7	25	
225	Preparation and performance of 0.5Li2MnO3D.5LiNi1/3Co1/3Mn1/3O2 with a fusiform porous micro-nano structure. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 15929-15939	13	28	
224	Preparation and performance of spherical FeF2.5D.5H2O nanoparticles wrapped by MWCNTs as cathode material of lithium ion batteries. <i>RSC Advances</i> , 2016 , 6, 97759-97769	3.7	11	
223	First-principles investigation of the effects of Sb doping on the LiNiO2. <i>Journal of Solid State Chemistry</i> , 2016 , 244, 52-60	3.3	15	
222	High-performance lithium storage of Ti3+-doped anatase TiO2@C composite spheres. <i>RSC Advances</i> , 2016 , 6, 99695-99703	3.7	9	
221	Synthesis of Nitrogen and Sulfur Co-Doped Carbon Derived from Chromium Carbide for the High Performance Supercapacitor. <i>Journal of the Electrochemical Society</i> , 2016 , 163, A2991-A2998	3.9	27	
220	Preparation and Performance of Metal-Organic-Frameworks-Derived Activated Mesoporous Carbon Polyhedron with Sponge-Like Structure for LithiumBulfur Batteries. <i>Journal of the Electrochemical Society</i> , 2016 , 163, A2922-A2929	3.9	17	
219	Facile synthesis and performance of Na-doped porous lithium-rich cathodes for lithium ion batteries. <i>RSC Advances</i> , 2016 , 6, 57310-57319	3.7	22	
218	Facile solvothermal synthesis of NaTi2(PO4)3/C porous plates as electrode materials for high-performance sodium ion batteries. <i>Journal of Power Sources</i> , 2016 , 325, 474-481	8.9	33	

217	Stem-like nano-heterostructural MWCNTs/Fe2O3@TiO2 composite with high lithium storage capability. <i>Journal of Alloys and Compounds</i> , 2016 , 684, 419-427	5.7	20
216	Hollow porous carbon spheres with hierarchical nanoarchitecture for application of the high performance supercapacitors. <i>Electrochimica Acta</i> , 2016 , 211, 183-192	6.7	102
215	The control and performance of Li4Mn5O12 and Li2MnO3 phase ratios in the lithium-rich cathode materials. <i>Electrochimica Acta</i> , 2016 , 190, 1142-1149	6.7	11
214	The excellent cycling stability and superior rate capability of polypyrrole as the anode material for rechargeable sodium ion batteries. <i>RSC Advances</i> , 2016 , 6, 2345-2351	3.7	24
213	Effect of magnesium doping on properties of lithium-rich layered oxide cathodes based on a one-step co-precipitation strategy. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 4941-4951	13	82
212	A facile synthesis of Fe3O4 nanoparticles/graphene for high-performance lithium/sodium-ion batteries. <i>RSC Advances</i> , 2016 , 6, 16624-16633	3.7	61
211	Preparation and supercapacitive performance of nanosized manganese dioxide/ordered mesoporous carbon composites. <i>Electrochimica Acta</i> , 2016 , 192, 234-242	6.7	31
210	An ionic-liquid-assisted approach to synthesize a reduced graphene oxide loading iron-based fluoride as a cathode material for sodium-ion batteries. <i>Journal of Alloys and Compounds</i> , 2016 , 670, 36	2 <i>5</i> 3768	16
209	Co3S4@polyaniline nanotubes as high-performance anode materials for sodium ion batteries. Journal of Materials Chemistry A, 2016 , 4, 5505-5516	13	164
208	First-principles study on doping effect of Sn in BiF 3 as cathode materials for Li-ion battery. <i>Current Applied Physics</i> , 2016 , 16, 12-19	2.6	1
207	Improving the electrochemical performances of spherical LiNi0.5Mn1.5O4 by Fe2O3 surface coating for lithium-ion batteries. <i>Electrochimica Acta</i> , 2016 , 212, 791-799	6.7	39
206	First-principles study of Ti doping in FeF3ID.33H2O. Current Applied Physics, 2016 , 16, 905-913	2.6	20
205	In situ growth and performance of spherical Fe2F5H2O nanoparticles in multi-walled carbon nanotube network matrix as cathode material for sodium ion batteries. <i>Journal of Power Sources</i> , 2016 , 316, 170-175	8.9	17
204	Effects of Ni and Mn doping on physicochemical and electrochemical performances of LiFePO4/C. Journal of Alloys and Compounds, 2016 , 675, 187-194	5.7	42
203	First-principles studies of adsorption behavior for graphene nanosheet on Al-doped BiF3(111) surfaces. <i>Materials Chemistry and Physics</i> , 2016 , 173, 291-297	4.4	3
202	The effects of LiTi2(PO4)3 modification on the performance of spherical Li1.5Ni0.25Mn0.75O2+ cathode material. <i>RSC Advances</i> , 2016 , 6, 46325-46335	3.7	18
201	Boron-doped ordered mesoporous carbons for the application of supercapacitors. <i>Electrochimica Acta</i> , 2016 , 207, 266-274	6.7	71
200	Highly-ordered microporous carbon nanospheres: a promising anode for high-performance sodium-ion batteries. <i>RSC Advances</i> , 2016 , 6, 84149-84154	3.7	12

199	Mitigating voltage and capacity fading of lithium-rich layered cathodes by lanthanum doping. Journal of Power Sources, 2016 , 335, 65-75	8.9	67
198	Enhancing the performance of lithiumBulfur batteries by anchoring polar polymers on the surface of sulfur host materials. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 16148-16156	13	42
197	A first-principle study of the effect of OHIdoping on the elastic constants and electronic structure of HTB-FeF3. <i>RSC Advances</i> , 2016 , 6, 75766-75776	3.7	6
196	A reversible conversion and intercalation reaction material for Li ion battery cathode. <i>Materials Letters</i> , 2016 , 180, 260-263	3.3	7
195	Mesoporous LiMnPO4/C nanoparticles as high performance cathode material for lithium ion batteries. <i>Electrochimica Acta</i> , 2016 , 214, 85-93	6.7	22
194	Nitrogen-doped hierarchical porous carbon for supercapacitor with well electrochemical performances. <i>Journal of Solid State Electrochemistry</i> , 2015 , 19, 1591-1597	2.6	22
193	Dependence of structure and temperature for lithium-rich layered-spinel microspheres cathode material of lithium ion batteries. <i>Scientific Reports</i> , 2015 , 5, 8403	4.9	33
192	A graphene loading heterogeneous hydrated forms iron based fluoride nanocomposite as novel and high-capacity cathode material for lithium/sodium ion batteries. <i>Journal of Power Sources</i> , 2015 , 283, 204-210	8.9	43
191	Surface Modification and Performance Enhancement of Carbon Derived from Chromium Carbide for Supercapacitor Applications. <i>Journal of the Electrochemical Society</i> , 2015 , 162, A845-A851	3.9	14
190	First-principles investigation on the structural, electronic properties and diffusion barriers of Mg/Al doped NaCoO2 as the cathode material of rechargeable sodium batteries. <i>RSC Advances</i> , 2015 , 5, 2722	9 ^{.3} 2723	4 ²¹
189	Synthesis of lithium titanate nanorods as anode materials for lithium and sodium ion batteries with superior electrochemical performance. <i>Journal of Power Sources</i> , 2015 , 283, 243-250	8.9	52
188	First-principles investigation on structural and electrochemical properties of NaCoO2 for rechargeable Na-ion batteries. <i>Journal of Central South University</i> , 2015 , 22, 2036-2042	2.1	3
187	Carbon-coated lithium titanium phosphate nanoporous microplates with superior electrochemical performance. <i>Journal of Power Sources</i> , 2015 , 294, 650-657	8.9	25
186	Study of the effect of a novel high-performance gel polymer electrolyte based on thermoplastic polyurethane/poly(vinylidene fluoride)/polystyrene and formed using an electrospinning technique. <i>RSC Advances</i> , 2015 , 5, 58655-58662	3.7	15
185	Enhanced activity of Aufle/C anodic electrocatalyst for direct borohydride-hydrogen peroxide fuel cell. <i>Journal of Power Sources</i> , 2015 , 285, 325-333	8.9	33
184	The electrochemical performance and mechanism of cobalt (II) fluoride as anode material for lithium and sodium ion batteries. <i>Electrochimica Acta</i> , 2015 , 168, 225-233	6.7	42
183	Preparation and performance of tubular nanoflaky (Ni, Co, Mn) oxides with hierarchical mesoporous structure. <i>Journal of Alloys and Compounds</i> , 2015 , 639, 352-358	5.7	20
182	Investigation of nanoporous carbon supported palladiumlinc nanocomposites as anode catalysts for direct borohydridellydrogen peroxide fuel cell. <i>International Journal of Hydrogen Energy</i> , 2015 , 40, 7301-7307	6.7	18

181	Nanoporous carbon supported platinum-copper nanocomposites as anode catalysts for direct borohydride-hydrogen peroxide fuel cell. <i>Electrochimica Acta</i> , 2015 , 171, 96-104	6.7	22
180	Li fast ion conductive La0.56Li0.33TiO3 inlaid LiFePO4/C microspheres with enhanced high-rate performance as cathode materials. <i>Electrochimica Acta</i> , 2015 , 152, 368-377	6.7	21
179	Solvothermal synthesis of monodisperse micro-nanostructure starfish-like porous LiFePO4 as cathode material for lithium-ion batteries. <i>Journal of Alloys and Compounds</i> , 2015 , 652, 213-219	5.7	20
178	New iron-based fluoride cathode material synthesized by non-aqueous ionic liquid for rechargeable sodium ion batteries. <i>Electrochimica Acta</i> , 2015 , 186, 7-15	6.7	27
177	Synthesis of Polyaniline-Coated Ordered Mesoporous Carbon Composite Electrode Material for Supercapacitor and Its Enhanced Electrochemical Performance. <i>Journal of Nanoscience and Nanotechnology</i> , 2015 , 15, 4961-8	1.3	5
176	First-principles study on the doping effects of Al in \text{\text{H}} MnO2. Current Applied Physics, 2015 , 15, 1556-1561	2.6	8
175	Facile preparation and performance of hierarchical self-assembly MnCo2O4 nanoflakes as anode active material for lithium ion batteries. <i>Electrochimica Acta</i> , 2015 , 180, 866-872	6.7	37
174	Sandwich-like cobalt sulfidegraphene composite han anode material with excellent electrochemical performance for sodium ion batteries. <i>RSC Advances</i> , 2015 , 5, 71644-71651	3.7	66
173	A tightly integrated sodium titanate-carbon composite as an anode material for rechargeable sodium ion batteries. <i>Journal of Power Sources</i> , 2015 , 274, 8-14	8.9	83
172	First-principles investigation on crystal, electronic structures and Diffusion barriers of NaNi1/3Co1/3Mn1/3O2 for advanced rechargeable Na-ion batteries. <i>Computational Materials Science</i> , 2015 , 98, 304-310	3.2	32
171	Synthesis of nanosheets-assembled lithium titanate hollow microspheres and their application to lithium ion battery anodes. <i>Electrochimica Acta</i> , 2015 , 151, 502-509	6.7	23
170	A coreShell structure spinel cathode material with a concentration-gradient shell for high performance lithium-ion batteries. <i>Journal of Power Sources</i> , 2015 , 274, 219-228	8.9	28
169	Design and Preparation of a Lithium-rich Layered Oxide Cathode with a Mg-Concentration-Gradient Shell for Improved Rate Capability. <i>ChemElectroChem</i> , 2015 , 2, 1346-1354	4.3	15
168	Sheet-like structure FeF3/graphene composite as novel cathode material for Na ion batteries. <i>RSC Advances</i> , 2015 , 5, 38277-38282	3.7	45
167	Design, preparation and performance of novel three-dimensional hierarchically porous carbon for supercapacitors. <i>Electrochimica Acta</i> , 2015 , 173, 566-574	6.7	41
166	Porous hollow Fe2O3@TiO2 coreShell nanospheres for superior lithium/sodium storage capability. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 13807-13818	13	80
165	Polyaniline modification and performance enhancement of lithium-rich cathode material based on layered-spinel hybrid structure. <i>Journal of Power Sources</i> , 2015 , 293, 89-94	8.9	39
164	Design and synthesis of three-dimensional hierarchical ordered porous carbons for supercapacitors. <i>Electrochimica Acta</i> , 2015 , 154, 110-118	6.7	64

(2014-2015)

163	Electrochemical oxidation of sodium borohydride on carbon supported Pt-Zn nanoparticle bimetallic catalyst and its implications to direct borohydride-hydrogen peroxide fuel cell. <i>Electrochimica Acta</i> , 2015 , 158, 209-218	6.7	59	
162	Improved electrochemical performance of the spherical LiNi0.5Mn1.5O4 particles modified by nano-Y2O3 coating. <i>Journal of Solid State Electrochemistry</i> , 2015 , 19, 1235-1246	2.6	20	
161	Synthesis and supercapacitive performance of three-dimensional cubic-ordered mesoporous carbons. <i>Electrochimica Acta</i> , 2015 , 163, 223-231	6.7	22	
160	Design and preparation of spherical high voltage LiNi0.5Mn1.5O4 with a novel concentration-gradient shell for lithium ion batteries. <i>Journal of Power Sources</i> , 2015 , 281, 85-93	8.9	22	
159	Self-assembly synthesis and electrochemical performance of Li1.5Mn0.75Ni0.15Co0.10O2+I microspheres with multilayer shells. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 3120-3129	13	33	
158	An Fe3O4@(CMnO2) coredouble-shell composite as a high-performance anode material for lithium ion batteries. <i>RSC Advances</i> , 2015 , 5, 14531-14539	3.7	22	
157	Excellent cycling stability of spherical spinel LiMn2O4 by Y2O3 coating for lithium-ion batteries. Journal of Solid State Electrochemistry, 2014 , 18, 115-123	2.6	16	
156	Improvement of electrochemical performance for Li-rich spherical Li1.3[Ni0.35Mn0.65]O2+x modified by Al2O3. <i>Journal of Solid State Electrochemistry</i> , 2014 , 18, 1789-1797	2.6	32	
155	Synthesis and electrochemical performance of LiV 3 O 8 /polythiophene composite as cathode materials for lithium ion batteries. <i>Journal of Power Sources</i> , 2014 , 247, 117-126	8.9	41	
154	Facile synthesis and performances of nanosized Li2TiO3-based shell encapsulated LiMn1/3Ni1/3Co1/3O2 microspheres. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 8362-8368	13	55	
153	Electrochemical performance of the graphene/Y2O3/LiMn2O4 hybrid as cathode for lithium-ion battery. <i>Journal of Alloys and Compounds</i> , 2014 , 584, 454-460	5.7	35	
152	Improvement of electrochemical performance for spherical LiFePO4 via hybrid coated with electron conductive carbon and fast Li ion conductive La0.56Li0.33TiO3. <i>Journal of Power Sources</i> , 2014 , 252, 73-78	8.9	23	
151	Iron fluoride with excellent cycle performance synthesized by solvothermal method as cathodes for lithium ion batteries. <i>Journal of Power Sources</i> , 2014 , 251, 75-84	8.9	52	
150	Nanoflaky MnO2 grown in situ on carbon microbeads as an anode material for high-performance lithium-ion batteries. <i>RSC Advances</i> , 2014 , 4, 22241-22245	3.7	8	
149	Ab initio study of graphene-like monolayer molybdenum disulfide as a promising anode material for rechargeable sodium ion batteries. <i>RSC Advances</i> , 2014 , 4, 43183-43188	3.7	62	
148	Preparation and performance of EMnO2 nanorod @ nanoflake (Ni, Co, Mn) oxides with hierarchical mesoporous structure. <i>RSC Advances</i> , 2014 , 4, 42910-42916	3.7	10	
147	Preparation and supercapacitive behaviors of the ordered mesoporous/microporous chromium carbide-derived carbons. <i>Journal of Power Sources</i> , 2014 , 269, 818-824	8.9	22	
146	One-pot synthesis of bicrystalline titanium dioxide spheres with a corellhell structure as anode materials for lithium and sodium ion batteries. <i>Journal of Power Sources</i> , 2014 , 269, 37-45	8.9	83	

145	Performance improvement of activated nanoporous carbon supported gold catalyst as an anode for direct borohydridellydrogen peroxide fuel cells. <i>RSC Advances</i> , 2014 , 4, 17129-17135	3.7	12
144	Effects of magnesium and fluorine co-doping on the structural and electrochemical performance of the spinel LiMn2O4 cathode materials. <i>Electrochimica Acta</i> , 2014 , 147, 271-278	6.7	35
143	Preparation and characterization of nanoporous carbon-supported platinum as anode electrocatalyst for direct borohydride fuel cell. <i>International Journal of Hydrogen Energy</i> , 2014 , 39, 6729	-6736	34
142	Elevated temperature cyclic performance of LiAlxMn2\(\mathbb{U}\)O4 microspheres synthesized via co-precipitation route. <i>Journal of Alloys and Compounds</i> , 2014 , 604, 50-56	5.7	20
141	Supercapacitive performance of hierarchical porous carbon microspheres prepared by simple one-pot method. <i>Journal of Power Sources</i> , 2014 , 254, 10-17	8.9	62
140	One-pot synthesis of FCNTs-wired TiO2 nanocomposites as anode materials for high-rate lithium ion batteries. <i>Electrochimica Acta</i> , 2014 , 123, 551-559	6.7	20
139	Suppressed capacity/voltage fading of high-capacity lithium-rich layered materials via the design of heterogeneous distribution in the composition. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 3899	13	102
138	Study of a novel porous gel polymer electrolyte based on thermoplastic polyurethane/poly(vinylidene fluoride-co-hexafluoropropylene) by electrospinning technique. <i>Journal of Power Sources</i> , 2014 , 263, 118-124	8.9	55
137	Supercapacitors based on ordered mesoporous carbon derived from furfuryl alcohol: effect of the carbonized temperature. <i>Journal of Nanoscience and Nanotechnology</i> , 2014 , 14, 5157-65	1.3	7
136	Effects of preparation temperature on electrochemical performance of nitrogen-enriched carbons. <i>Transactions of Nonferrous Metals Society of China</i> , 2014 , 24, 3541-3550	3.3	5
135	Effective enhancement of electrochemical performance for spherical spinel LiMn2O4 via Li ion conductive Li2ZrO3 coating. <i>Electrochimica Acta</i> , 2014 , 134, 143-149	6.7	40
134	Dual template method to prepare hierarchical porous carbon nanofibers for high-power supercapacitors. <i>Journal of Solid State Electrochemistry</i> , 2013 , 17, 2731-2739	2.6	20
133	Improved electrochemical properties of BiF3/C cathode via adding amorphous AlPO4 for lithium-ion batteries. <i>Electrochimica Acta</i> , 2013 , 102, 8-18	6.7	28
132	A comparison among FeF3BH2O, FeF3D.33H2O and FeF3 cathode materials for lithium ion batteries: Structural, electrochemical, and mechanism studies. <i>Journal of Power Sources</i> , 2013 , 238, 501-	-813	92
131	The kinetics of Li-ion deintercalation in the Li-rich layered Li1.12[Ni0.5Co0.2Mn0.3]0.89O2 studied by electrochemical impedance spectroscopy and galvanostatic intermittent titration technique. <i>Electrochimica Acta</i> , 2013 , 109, 355-364	6.7	68
130	The effects of preparation temperature on microstructure and electrochemical performance of calcium carbide-derived carbon. <i>Journal of Solid State Electrochemistry</i> , 2013 , 17, 2453-2460	2.6	10
129	Spherical concentration-gradient LiMn1.87Ni0.13O4 spinel as a high performance cathode for lithium ion batteries. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 4010	13	53
128	Preparation and capacitive properties of the coreThell structure carbon aerogel microbeadsnanowhisker-like NiO composites. <i>Journal of Power Sources</i> , 2013 , 224, 317-323	8.9	42

(2013-2013)

127	Carbon supported PtBn nanoparticles as anode catalyst for direct borohydrideflydrogen peroxide fuel cell: Electrocatalysis and fuel cell performance. <i>Journal of Power Sources</i> , 2013 , 224, 6-12	8.9	57
126	A high-capacity carbon prepared from renewable chicken feather biopolymer for supercapacitors. Journal of Power Sources, 2013 , 225, 101-107	8.9	161
125	The effects of electrolyte on the supercapacitive performance of activated calcium carbide-derived carbon. <i>Journal of Power Sources</i> , 2013 , 226, 202-209	8.9	109
124	Synthesis of LiTi2(PO4)3-acetylene black nanocomposites for lithium ion batteries by the polyvinyl alcohol assisted solgel method and ball-milling. <i>Journal of Power Sources</i> , 2013 , 234, 292-301	8.9	27
123	First principles investigation of the effects of Bi vacancy on the magnetic, conductive and electrochemical properties of BiF3. <i>Computational Materials Science</i> , 2013 , 68, 117-120	3.2	2
122	Preparation and performance of hierarchically porous carbons as oxygen electrodes for lithium oxygen batteries. <i>Transactions of Nonferrous Metals Society of China</i> , 2013 , 23, 3685-3690	3.3	6
121	Supercapacitive performance of nitrogen-enriched carbons from carbonization of polyaniline/activated mesocarbon microbeads. <i>Journal of Power Sources</i> , 2013 , 227, 1-7	8.9	43
120	Layered Li[Ni0.5Co0.2Mn0.3]O2[i2MnO3 core[hell structured cathode material with excellent stability. <i>Journal of Power Sources</i> , 2013 , 242, 589-596	8.9	62
119	Influence of NiCl2 modification on the electrochemical performance of LiV3O8 cathode for lithium ion batteries. <i>Ionics</i> , 2013 , 19, 9-15	2.7	7
118	Highly energy density olivine cathode material synthesized by coprecipitation technique. <i>Electrochimica Acta</i> , 2013 , 90, 597-603	6.7	14
117	Effective enhancement of electrochemical properties for LiFePO4/C cathode materials by Na and Ti co-doping. <i>Electrochimica Acta</i> , 2013 , 89, 479-487	6.7	73
116	Improved electrochemical performance of LiFePO4/C cathode via Ni and Mn co-doping for lithium-ion batteries. <i>Journal of Power Sources</i> , 2013 , 237, 149-155	8.9	92
115	First-principles calculations of the vacancy defects in BiOF as cathode materials for Li-ion batteries. <i>Computational Materials Science</i> , 2013 , 74, 50-54	3.2	7
114	Spherical lithium-rich layered Li1.13[Mn0.534Ni0.233Co0.233]0.87O2 with concentration-gradient outer layer as high-performance cathodes for lithium ion batteries. <i>Journal of Power Sources</i> , 2013 , 232, 338-347	8.9	50
113	Electrochemical characterization of polyanilinelliV3O8 nanocomposite cathode material for lithium ion batteries. <i>Electrochimica Acta</i> , 2013 , 94, 113-123	6.7	37
112	Supercapacitive behaviors of the nitrogen-enriched activated mesocarbon microbead in aqueous electrolytes. <i>Journal of Solid State Electrochemistry</i> , 2013 , 17, 1693-1700	2.6	15
111	Bismuth phosphate: A novel cathode material based on conversion reaction for lithium-ion batteries. <i>Journal of Alloys and Compounds</i> , 2013 , 579, 18-26	5.7	26
110	A novel electrospun PVDF/PMMA gel polymer electrolyte with in situ TiO2 for Li-ion batteries. <i>Solid State Ionics</i> , 2013 , 249-250, 93-97	3.3	59

109	Influence of the reaction temperature on polyaniline morphology and evaluation of their performance as supercapacitor electrode. <i>Journal of Applied Polymer Science</i> , 2013 , 130, 3753-3758	2.9	32
108	Determination of the chemical diffusion coefficient of lithium ions in spherical Li[Ni0.5Mn0.3Co0.2]O2. <i>Electrochimica Acta</i> , 2012 , 66, 88-93	6.7	93
107	Synthesis and characterization of LiTi2(PO4)3/C nanocomposite as lithium intercalation electrode materials. <i>Electrochimica Acta</i> , 2012 , 70, 136-141	6.7	24
106	Aqueous rechargeable lithium battery based on polyaniline and LiMn2O4 with good cycling performance. <i>Electrochimica Acta</i> , 2012 , 70, 360-364	6.7	53
105	The effect of ammonia concentration on the morphology and electrochemical properties of LiFePO4 synthesized by ammonia assisted hydrothermal route. <i>Electrochimica Acta</i> , 2012 , 76, 120-129	6.7	37
104	Porous polythiophene as a cathode material for lithium batteries with high capacity and good cycling stability. <i>Reactive and Functional Polymers</i> , 2012 , 72, 45-49	4.6	61
103	The effects of surfactant template concentration on the supercapacitive behaviors of hierarchically porous carbons. <i>Journal of Power Sources</i> , 2012 , 199, 402-408	8.9	46
102	Carbon supported palladium hollow nanospheres as anode catalysts for direct borohydride-hydrogen peroxide fuel cells. <i>Journal of Power Sources</i> , 2012 , 205, 63-70	8.9	36
101	Electrospun PVdF P VC nanofibrous polymer electrolytes for polymer lithium-ion batteries. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2012 , 177, 86-91	3.1	61
100	PVC P MMA composite electrospun membranes as polymer electrolytes for polymer lithium-ion batteries. <i>Ionics</i> , 2012 , 18, 47-53	2.7	23
99	Synthesis and electrochemical performance of spherical FeF3/ACMB composite as cathode material for lithium-ion batteries. <i>Journal of Materials Science</i> , 2012 , 47, 1819-1824	4.3	31
98	Effects of complexants on [Ni1/3Co1/3Mn1/3]CO3 morphology and electrochemical performance of LiNi1/3Co1/3Mn1/3O2. <i>Journal of Solid State Electrochemistry</i> , 2012 , 16, 481-490	2.6	30
97	Electrochemical behavior of spherical LiNi1/3Co1/3Mn1/3O2 as cathode material for aqueous rechargeable lithium batteries. <i>Journal of Solid State Electrochemistry</i> , 2012 , 16, 491-497	2.6	23
96	Structural, magnetic and electronic properties of FeF2 by first-principle calculation. <i>Transactions of Nonferrous Metals Society of China</i> , 2012 , 22, 386-390	3.3	4
95	Effect of MgF2 coating on the electrochemical performance of LiMn2O4 cathode materials. <i>Journal of Solid State Electrochemistry</i> , 2012 , 16, 2913-2920	2.6	17
94	The effect of activation technology on the electrochemical performance of calcium carbide skeleton carbon. <i>Journal of Solid State Electrochemistry</i> , 2012 , 16, 2941-2947	2.6	13
93	The effects of crystal structure of the precursor MnO2 on electrochemical properties of spinel LiMn2O4. <i>Journal of Solid State Electrochemistry</i> , 2012 , 16, 3651-3659	2.6	8
92	Influence of borohydride concentration on the synthesized Au/graphene nanocomposites for direct borohydride fuel cell. <i>Journal of Solid State Electrochemistry</i> , 2012 , 16, 3929-3937	2.6	12

91	The effects of FePO4-coating on high-voltage cycling stability and rate capability of Li[Ni0.5Co0.2Mn0.3]O2. <i>Journal of Alloys and Compounds</i> , 2012 , 541, 125-131	5.7	60
90	Excellent cycle performance of Co-doped FeF3/C nanocomposite cathode material for lithium-ion batteries. <i>Journal of Materials Chemistry</i> , 2012 , 22, 17539		95
89	Enhancement of Electrochemical Properties for Monodisperse Spherical LiFePO4/C Synthesized by Ammonia Assisted Hydrothermal Route via Ni and F Co-Doping. <i>Journal of the Electrochemical Society</i> , 2012 , 159, A1904-A1911	3.9	16
88	Effect of aqueous electrolytes on the electrochemical behaviors of supercapacitors based on hierarchically porous carbons. <i>Journal of Power Sources</i> , 2012 , 216, 290-296	8.9	179
87	Effects of amorphous AlPO4 coating on the electrochemical performance of BiF3 cathode materials for lithium-ion batteries. <i>Journal of Power Sources</i> , 2012 , 218, 204-211	8.9	24
86	First principles study on the structural, magnetic and electronic properties of Te-doped BiF3. <i>Computational Materials Science</i> , 2012 , 60, 212-216	3.2	4
85	First principles study on the structural, magnetic and electronic properties of Co-doped FeF3. <i>Computational and Theoretical Chemistry</i> , 2012 , 980, 44-48	2	16
84	Electrochemical performance of electrospun LiFePO4/C submicrofibers composite cathode material for lithium ion batteries. <i>Electrochimica Acta</i> , 2012 , 78, 40-48	6.7	30
83	Comparison of electrocatalytic activity of carbon-supported AuM (MI=IFe, Co, Ni, Cu and Zn) bimetallic nanoparticles for direct borohydride fuel cells. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 11984-11993	6.7	47
82	Carbon-supported Ptto nanoparticles as anode catalyst for direct borohydride-hydrogen peroxide fuel cell: Electrocatalysis and fuel cell performance. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 12650-12658	6.7	75
81	Supercapacitive behaviors of activated mesocarbon microbeads coated with polyaniline. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 14365-14372	6.7	33
80	Graphene supported platinum nanoparticles as anode electrocatalyst for direct borohydride fuel cell. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 17984-17991	6.7	41
79	Electrochemical performance of LaF3-coated LiMn2O4 cathode materials for lithium ion batteries. <i>Electrochimica Acta</i> , 2012 , 83, 65-72	6.7	53
78	Synthesis and characterization of a Li-rich layered cathode material Li1.15[(Mn1/3Ni1/3Co1/3)0.5(Ni1/4Mn3/4)0.5]0.85O2 with spherical coreShell structure. <i>Journal of Materials Chemistry</i> , 2012 , 22, 19666		50
77	Novel electrospun PAN B VC composite fibrous membranes as polymer electrolytes for polymer lithium-ion batteries. <i>Ionics</i> , 2012 , 18, 853-859	2.7	10
76	A novel electrospun TPU/PVdF porous fibrous polymer electrolyte for lithium ion batteries. <i>Journal of Applied Polymer Science</i> , 2012 , 125, 2556-2563	2.9	39
75	Electrochemical performance of LiVPO4F/C composite cathode prepared through amorphous vanadium phosphorus oxide intermediate. <i>Journal of Solid State Electrochemistry</i> , 2012 , 16, 1211-1217	2.6	17
74	Influence of Li source on tap density and high rate cycling performance of spherical Li[Ni1/3Co1/3Mn1/3]O2 for advanced lithium-ion batteries. <i>Journal of Solid State Electrochemistry</i> , 2012, 16, 1229-1237	2.6	23

73	Influence of preparation method on structure, morphology, and electrochemical performance of spherical Li[Ni0.5Mn0.3Co0.2]O2. <i>Journal of Solid State Electrochemistry</i> , 2012 , 16, 2823-2836	2.6	14
72	Reverse micelle synthesis of AuNi alloy as electrocatalyst of borohydride oxidation. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 1254-1262	6.7	33
71	Effect of Co0.58Ni0.42 oxide nanoneedles coating on the electrochemical properties of LiV3O8 cathode. <i>Composites Science and Technology</i> , 2012 , 72, 344-349	8.6	5
70	Supercapacitive Behaviors of Hierarchically Porous Carbons Prepared by Metal Oxide/Surfactant Templates. <i>Journal of the Electrochemical Society</i> , 2012 , 159, A431-A437	3.9	9
69	Improvement of Electrochemical Properties of LiV3O8/LiMn2O4ARLB by NiO Nanofibers Coating on the Anode. <i>Journal of the Electrochemical Society</i> , 2012 , 159, A1230-A1235	3.9	9
68	High Tap Density SphericalLi[Ni0.5Mn0.3Co0.2]O2Cathode Material Synthesized via Continuous Hydroxide Coprecipitation Method for Advanced Lithium-Ion Batteries. <i>International Journal of Electrochemistry</i> , 2012 , 2012, 1-9	2.4	2
67	First-principles calculations on structural, magnetic and electronic properties of oxygen doped BiF3. <i>Computational Materials Science</i> , 2011 , 50, 3131-3135	3.2	14
66	Stability and electronic structure of the CoB compounds from first-principle calculations. <i>Journal of Alloys and Compounds</i> , 2011 , 509, 165-171	5.7	66
65	Preparation and characterization of carbon aerogel microspheres by an inverse emulsion polymerization. <i>Journal of Non-Crystalline Solids</i> , 2011 , 357, 793-797	3.9	28
64	Synthesis and supercapacitive behavior of carbon aerogel microbeads encapsulated by in situ Co3O4 nanoparticle. <i>Synthetic Metals</i> , 2011 , 161, 1725-1730	3.6	12
63	Influence of pretreatment process on structure, morphology and electrochemical properties of Li[Ni1/3Co1/3Mn1/3]O2 cathode material. <i>Transactions of Nonferrous Metals Society of China</i> , 2011 , 21, 1995-2001	3.3	4
62	Density functional theory studies on elastic and electronic properties of tetragonal ZnP2. <i>Solid State Sciences</i> , 2011 , 13, 1604-1607	3.4	5
61	Study of a novel porous gel polymer electrolyte based on TPU/PVdF by electrospinning technique. <i>Solid State Ionics</i> , 2011 , 203, 42-46	3.3	29
60	Mn2O3/carbon aerogel microbead composites synthesized by in situ coating method for supercapacitors. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2011 , 176, 1232-1238	3.1	42
59	Electrochemical behavior of nanostructured LiV3O8 in aqueous LiNO3 solution. <i>Journal of Physics and Chemistry of Solids</i> , 2011 , 72, 1495-1500	3.9	6
58	A novel high-performance gel polymer electrolyte membrane basing on electrospinning technique for lithium rechargeable batteries. <i>Journal of Power Sources</i> , 2011 , 196, 8638-8643	8.9	65
57	In situ ceramic fillers of electrospun thermoplastic polyurethane/poly(vinylidene fluoride) based gel polymer electrolytes for Li-ion batteries. <i>Journal of Power Sources</i> , 2011 , 196, 9751-9756	8.9	98
56	Studies of electrochemical performance of carbon supported Pt[Iu nanoparticles as anode catalysts for direct borohydrideflydrogen peroxide fuel cell. <i>Journal of Power Sources</i> , 2011 , 196, 9924.	.9§ 3 0	27

55	Electrochemical characterization of a LiV3O8polypyrrole composite as a cathode material for lithium ion batteries. <i>Materials Chemistry and Physics</i> , 2011 , 127, 151-155	4.4	34
54	Electrochemical properties of Li4Ti5½xNixMnxO12 compounds synthesized by solਊel process. <i>Materials Chemistry and Physics</i> , 2011 , 131, 431-435	4.4	20
53	Synthesis and electrochemical performance of bismuth anadium oxyfluoride. <i>Electrochimica Acta</i> , 2011 , 56, 7437-7441	6.7	9
52	Carbon supported Pt hollow nanospheres as anode catalysts for direct borohydride-hydrogen peroxide fuel cells. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 11512-11518	6.7	42
51	High activity of Aulīu/C electrocatalyst as anodic catalyst for direct borohydride-hydrogen peroxide fuel cell. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 15775-15782	6.7	53
50	Low-cost quasi-solid-state dye-sensitized solar cells based on a metal-free organic dye and a carbon aerogel counter electrode. <i>Journal of Materials Science</i> , 2011 , 46, 7482-7488	4.3	11
49	The preparation and performance of flocculent polyaniline/carbon nanotubes composite electrode material for supercapacitors. <i>Journal of Solid State Electrochemistry</i> , 2011 , 15, 675-681	2.6	37
48	Preparation and performances of carbon aerogel microspheres for the application of supercapacitor. <i>Journal of Solid State Electrochemistry</i> , 2011 , 15, 643-648	2.6	48
47	Preparation of poly(vinylidene fluoride)/poly(methyl methacrylate) membranes by novel electrospinning system for lithium ion batteries. <i>Journal of Applied Polymer Science</i> , 2011 , 122, 2616-26	2 0 9	22
46	Ammonia Assisted Hydrothermal Synthesis of Monodisperse LiFePO4 [] Microspheres as Cathode Material for Lithium Ion Batteries. <i>Journal of the Electrochemical Society</i> , 2011 , 158, A1448	3.9	33
45	The studies of performance of the Au electrode modified by Zn as the anode electrocatalyst of direct borohydride fuel cell. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 8857-8863	6.7	34
44	Studies on preparation and properties of the multi-walled carbon nanotubes (MWNTs)/epoxy nanocomposites. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2011 , 528, 5759-5763	5.3	13
43	Investigation of carbon supported Au N i bimetallic nanoparticles as electrocatalyst for direct borohydride fuel cell. <i>Journal of Power Sources</i> , 2011 , 196, 1042-1047	8.9	71
42	Investigation of the Performance of Aucore-Pdshell/C as the Anode Catalyst of Direct Borohydride-Hydrogen Peroxide Fuel Cell. <i>International Journal of Electrochemistry</i> , 2011 , 2011, 1-7	2.4	
41	Preparation and Capacitive Behavior of Dandelion-LikeEMnO2Nanofibre/Activated Carbon Microbeads Composite for the Application of Supercapacitor. <i>International Journal of Electrochemistry</i> , 2011 , 2011, 1-6	2.4	2
40	High Molar Extinction Coefficient Branchlike Organic Dyes Containing Di(p-tolyl)phenylamine Donor for Dye-Sensitized Solar Cells Applications. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 3280-3286	3.8	105
39	Effects of Na content on structure and electrochemical performances of NaxMnO2+Eathode material. <i>Transactions of Nonferrous Metals Society of China</i> , 2010 , 20, 1892-1898	3.3	14
38	The preparation and performance of calcium carbide-derived carbon/polyaniline composite electrode material for supercapacitors. <i>Journal of Power Sources</i> , 2010 , 195, 1747-1752	8.9	47

37	Polypyrrole/carbon aerogel composite materials for supercapacitor. <i>Journal of Power Sources</i> , 2010 , 195, 6964-6969	8.9	178
36	The preparation of PANI/CA composite electrode material for supercapacitors and its electrochemical performance. <i>Journal of Solid State Electrochemistry</i> , 2010 , 14, 651-657	2.6	59
35	The effects of surface modification on the supercapacitive behaviors of carbon derived from calcium carbide. <i>Journal of Materials Science</i> , 2010 , 45, 6030-6037	4.3	34
34	Performance of supported Auto alloy as the anode catalyst of direct borohydride-hydrogen peroxide fuel cell. <i>International Journal of Hydrogen Energy</i> , 2010 , 35, 8136-8142	6.7	69
33	Properties and chemical oxidation polymerization of polyaniline/neutral red/TiO2 composite electrodes. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2010 , 171, 104-108	3.1	18
32	Determination of the chemical diffusion coefficient of lithium in Li3V2(PO4)3. <i>Materials Letters</i> , 2009 , 63, 1439-1441	3.3	31
31	Effects of MoS2 doping on the electrochemical performance of FeF3 cathode materials for lithium-ion batteries. <i>Materials Letters</i> , 2009 , 63, 1788-1790	3.3	60
30	Chemical diffusion coefficient of lithium ion in Li3V2(PO4)3 cathode material. <i>Materials Letters</i> , 2009 , 63, 2396-2398	3.3	13
29	Investigation of carbon-supported Au hollow nanospheres as electrocatalyst for electrooxidation of sodium borohydride. <i>International Journal of Hydrogen Energy</i> , 2009 , 34, 3360-3366	6.7	50
28	Carbon-Supported Au Hollow Nanospheres as Anode Catalysts for Direct Borohydride⊞ydrogen Peroxide Fuel Cells. <i>Energy & Fuels</i> , 2009 , 23, 4037-4041	4.1	40
27	Solgel synthesis and electrochemical properties of CuV2O6 cathode material. <i>Journal of Alloys and Compounds</i> , 2009 , 479, 875-878	5.7	30
26	Structure and electrochemical performance of FeF3/V2O5 composite cathode material for lithium-ion battery. <i>Journal of Alloys and Compounds</i> , 2009 , 486, 93-96	5.7	65
25	Synthesis of nanostructured carbon by chlorination of calcium carbide at moderate temperatures and its performance evaluation. <i>Materials Chemistry and Physics</i> , 2008 , 112, 461-465	4.4	29
24	Electrochemical behavior of Li3V2(PO4)3/C composite cathode material for lithium-ion batteries. <i>Materials Letters</i> , 2008 , 62, 1646-1648	3.3	38
23	A novel method to synthesize Li3V2(PO4)3/C composite and its electrochemical Li intercalation performances. <i>Materials Letters</i> , 2008 , 62, 3676-3678	3.3	21
22	Structure and electrochemical properties of carbon aerogels synthesized at ambient temperatures as supercapacitors. <i>Journal of Non-Crystalline Solids</i> , 2008 , 354, 19-24	3.9	92
21	Preparation of NaV1\(\text{NaV1} \text{ AlxPO4F cathode materials for application of sodium-ion battery.} \) Transactions of Nonferrous Metals Society of China, 2008, 18, 346-350	3.3	36
20	Synthesis and electrochemical properties of monoclinic Li3V2(PO4)3/C composite cathode material prepared from a sucrose-containing precursor. <i>Journal of Applied Electrochemistry</i> , 2008 , 38, 1453-145	7 ^{2.6}	26

19	Nickel hydroxide/activated carbon composite electrodes for electrochemical capacitors. <i>Journal of Power Sources</i> , 2007 , 164, 425-429	8.9	97
18	Preparation and characterization of RuO2 ExH2O/carbon aerogel composites for supercapacitors. <i>Journal of Applied Electrochemistry</i> , 2007 , 37, 1129-1135	2.6	25
17	Effects of synthesis conditions on the structural and electrochemical properties of layered Li[Ni1/3Co1/3Mn1/3]O2 cathode material via the hydroxide co-precipitation method LIB SCITECH. <i>Journal of Power Sources</i> , 2006 , 161, 601-605	8.9	67
16	Characterization and performance of hydrous manganese oxide prepared by electrochemical method and its application for supercapacitors. <i>Electrochimica Acta</i> , 2006 , 52, 1758-1762	6.7	50
15	Rapid activation of MmNi5Mmx based MH alloy through Pd nanoparticle impregnation. <i>Journal of Power Sources</i> , 2006 , 155, 470-474	8.9	4
14	Studies on preparation and performances of carbon aerogel electrodes for the application of supercapacitor. <i>Journal of Power Sources</i> , 2006 , 158, 784-788	8.9	278
13	Synthesis and characterization of high tap-density layered Li[Ni1/3Co1/3Mn1/3]O2 cathode material via hydroxide co-precipitation. <i>Journal of Power Sources</i> , 2006 , 158, 654-658	8.9	93
12	The preparation of NaV1\(\mathbb{R}\)CrxPO4F cathode materials for sodium-ion battery. <i>Journal of Power Sources</i> , 2006 , 160, 698-703	8.9	110
11	Synthesis and electrochemical properties of layered Li[Ni0.333Co0.333Mn0.293Al0.04]O2DFz cathode materials prepared by the soldel method. <i>Journal of Power Sources</i> , 2006 , 160, 657-661	8.9	35
10	A new type of MnO2ExH2O/CRF composite electrode for supercapacitors. <i>Journal of Power Sources</i> , 2006 , 160, 1501-1505	8.9	80
9	Solgel template synthesis of highly ordered MnO2 nanowire arrays. Journal of Power Sources,	0 0	208
	2005 , 140, 211-215	8.9	
8	Oxygen catalytic evolution reaction on nickel hydroxide electrode modified by electroless cobalt coating. <i>International Journal of Hydrogen Energy</i> , 2004 , 29, 967-972	6.7	95
	Oxygen catalytic evolution reaction on nickel hydroxide electrode modified by electroless cobalt		95 73
8	Oxygen catalytic evolution reaction on nickel hydroxide electrode modified by electroless cobalt coating. <i>International Journal of Hydrogen Energy</i> , 2004 , 29, 967-972 Studies of the performance of nanostructural multiphase nickel hydroxide. <i>Journal of Power</i>	6.7	
7	Oxygen catalytic evolution reaction on nickel hydroxide electrode modified by electroless cobalt coating. <i>International Journal of Hydrogen Energy</i> , 2004 , 29, 967-972 Studies of the performance of nanostructural multiphase nickel hydroxide. <i>Journal of Power Sources</i> , 2003 , 115, 153-160 Studies on the oxygen reduction catalyst for zincilir battery electrode. <i>Journal of Power Sources</i> ,	6.7 8.9	73
7	Oxygen catalytic evolution reaction on nickel hydroxide electrode modified by electroless cobalt coating. <i>International Journal of Hydrogen Energy</i> , 2004 , 29, 967-972 Studies of the performance of nanostructural multiphase nickel hydroxide. <i>Journal of Power Sources</i> , 2003 , 115, 153-160 Studies on the oxygen reduction catalyst for zincBir battery electrode. <i>Journal of Power Sources</i> , 2003 , 124, 278-284 Studies of Corrosion Resistance of Amorphous Chromium Deposits in Acidic Solution. <i>Transactions</i>	6.7 8.9 8.9	73
8 7 6	Oxygen catalytic evolution reaction on nickel hydroxide electrode modified by electroless cobalt coating. <i>International Journal of Hydrogen Energy</i> , 2004 , 29, 967-972 Studies of the performance of nanostructural multiphase nickel hydroxide. <i>Journal of Power Sources</i> , 2003 , 115, 153-160 Studies on the oxygen reduction catalyst for zincBir battery electrode. <i>Journal of Power Sources</i> , 2003 , 124, 278-284 Studies of Corrosion Resistance of Amorphous Chromium Deposits in Acidic Solution. <i>Transactions of the Institute of Metal Finishing</i> , 2000 , 78, 101-104 Effect of state of charge on impedance spectrum of sealed NiMH cells. <i>Journal of Alloys and</i>	6.7 8.9 8.9	73 7 ²

Insight into the Supercapacitive Behavior of Activated Hollow Porous Carbon Spheres in Different Electrolytes. *ACS Applied Energy Materials*,

6.1 1