Xiaohua Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1863156/publications.pdf

Version: 2024-02-01

623734 610901 32 604 14 24 h-index citations g-index papers 33 33 33 860 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	ERM protein moesin is phosphorylated by advanced glycation end products and modulates endothelial permeability. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H238-H246.	3.2	61
2	Role of Src in Vascular Hyperpermeability Induced by Advanced Glycation End Products. Scientific Reports, 2015, 5, 14090.	3.3	46
3	NF-κB signaling is essential for resistance to heat stress-induced early stage apoptosis in human umbilical vein endothelial cells. Scientific Reports, 2015, 5, 13547.	3.3	41
4	Sirt1 Protects Endothelial Cells against LPS-Induced Barrier Dysfunction. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-14.	4.0	39
5	RAGE Plays a Role in LPS-Induced NF-κB Activation and Endothelial Hyperpermeability. Sensors, 2017, 17, 722.	3.8	37
6	Role of TLR4-p38 MAPK-Hsp27 signal pathway in LPS-induced pulmonary epithelial hyperpermeability. BMC Pulmonary Medicine, 2018, 18, 178.	2.0	37
7	Src Plays an Important Role in AGE-Induced Endothelial Cell Proliferation, Migration, and Tubulogenesis. Frontiers in Physiology, 2018, 9, 765.	2.8	33
8	Polydatin protects against lipopolysaccharide-induced endothelial barrier disruption via SIRT3 activation. Laboratory Investigation, 2020, 100, 643-656.	3.7	33
9	Xuebijing injection reduces organ injuries and improves survival by attenuating inflammatory responses and endothelial injury in heatstroke mice. BMC Complementary and Alternative Medicine, 2015, 15, 4.	3.7	30
10	Advanced glycation end products induce immature angiogenesis in in vivo and ex vivo mouse models. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 318, H519-H533.	3.2	28
11	Role of Moesin in Advanced Glycation End Products-Induced Angiogenesis of Human Umbilical Vein Endothelial Cells. Scientific Reports, 2016, 6, 22749.	3.3	28
12	Mdia1 is Crucial for Advanced Glycation End Product-Induced Endothelial Hyperpermeability. Cellular Physiology and Biochemistry, 2018, 45, 1717-1730.	1.6	26
13	Enhancing site-specific DNA integration by a Cas9 nuclease fused with a DNA donor-binding domain. Nucleic Acids Research, 2020, 48, 10590-10601.	14.5	20
14	Liver X receptor-α and miR-130a-3p regulate expression of sphingosine 1-phosphate receptor 2 in human umbilical vein endothelial cells. American Journal of Physiology - Cell Physiology, 2016, 310, C216-C226.	4.6	17
15	A Prediction Model for Assessing Prognosis in Critically Ill Patients with Sepsis-associated Acute Kidney Injury. Shock, 2021, 56, 564-572.	2.1	16
16	Endoplasmic reticulum stress plays a role in the advanced glycation end product-induced inflammatory response in endothelial cells. Life Sciences, 2014, 110, 44-51.	4.3	15
17	Heat Stress-Induced Disruption of Endothelial Barrier Function Is via PAR1 Signaling and Suppressed by Xuebijing Injection. PLoS ONE, 2015, 10, e0118057.	2.5	15
18	\hat{l}^2 -Catenin phosphorylation at Y654 and Y142 is crucial for high mobility group box-1 protein-induced pulmonary vascular hyperpermeability. Journal of Molecular and Cellular Cardiology, 2019, 127, 174-184.	1.9	11

#	Article	IF	CITATIONS
19	Exosomes derived from NGF-overexpressing bone marrow mesenchymal stem cell sheet promote spinal cord injury repair in a mouse model. Neurochemistry International, 2022, 157, 105339.	3.8	10
20	Role of the Receptor for Advanced Glycation End Products in Heat Stress-Induced Endothelial Hyperpermeability in Acute Lung Injury. Frontiers in Physiology, 2020, 11, 1087.	2.8	9
21	Advanced glycation end products induce endothelial hyperpermeability via βâ€catenin phosphorylation and subsequent upâ€regulation of ADAM10. Journal of Cellular and Molecular Medicine, 2021, 25, 7746-7759.	3.6	9
22	p53 SUMOylation Mediates AOPP-Induced Endothelial Senescence and Apoptosis Evasion. Frontiers in Cardiovascular Medicine, 2021, 8, 795747.	2.4	8
23	Apocynin protects endothelial cells from endoplasmic reticulum stress-induced apoptosis via IRE1α engagement. Molecular and Cellular Biochemistry, 2018, 449, 257-265.	3.1	7
24	Association of single-nucleotide polymorphisms in the <i>RAGE</i> gene and its gene- environment interactions with diabetic nephropathy in Chinese patients with type 2 diabetes. Oncotarget, 2017, 8, 96885-96892.	1.8	7
25	Role of myosin light chain and myosin light chain kinase in advanced glycation end product–induced endothelial hyperpermeability in vitro and in vivo. Diabetes and Vascular Disease Research, 2016, 13, 137-144.	2.0	6
26	Idiopathic renal hypouricemia: A case report and literature review. Molecular Medicine Reports, 2019, 20, 5118-5124.	2.4	6
27	Risk Factors for Enterococcal Intra-Abdominal Infections and Outcomes in Intensive Care Unit Patients. Surgical Infections, 2021, 22, 845-853.	1.4	5
28	Effect of moesin phosphorylation on highâ€'dose sphingosineâ€'1â€'phosphateâ€'induced endothelial responses. Molecular Medicine Reports, 2018, 17, 1933-1939.	2.4	2
29	Delayed gastric emptying in nondiabetic patients with end-stage kidney disease. Renal Failure, 2022, 44, 329-335.	2.1	2
30	Advanced glycation end products induce actin rearrangement and subsequent hyperpermeability in endothelial cells. FASEB Journal, 2006, 20, .	0.5	0
31	Interaction of Phosphoâ€Moesin and CD44 in Pericytes Attenuated the Maturation of Neovessles in AGEâ€induced Angiogenesis. FASEB Journal, 2018, 32, 573.3.	0.5	0
32	HMGB1â€induced vascular hyperpermeability requires βâ€catenin phosphorylation. FASEB Journal, 2020, 34, 1-1.	0.5	0