Riccardo Bommarco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1862964/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Wild Pollinators Enhance Fruit Set of Crops Regardless of Honey Bee Abundance. Science, 2013, 339, 1608-1611.	6.0	1,767
2	Ecological intensification: harnessing ecosystem services for food security. Trends in Ecology and Evolution, 2013, 28, 230-238.	4.2	1,325
3	Extinction debt: a challenge for biodiversity conservation. Trends in Ecology and Evolution, 2009, 24, 564-571.	4.2	1,053
4	Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic and Applied Ecology, 2010, 11, 97-105.	1.2	1,039
5	A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecology Letters, 2013, 16, 584-599.	3.0	875
6	Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature, 2015, 521, 77-80.	13.7	816
7	Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecology Letters, 2011, 14, 1062-1072.	3.0	681
8	Delivery of crop pollination services is an insufficient argument for wild pollinator conservation. Nature Communications, 2015, 6, 7414.	5.8	656
9	Habitat fragmentation causes immediate and timeâ€delayed biodiversity loss at different trophic levels. Ecology Letters, 2010, 13, 597-605.	3.0	620
10	Non-bee insects are important contributors to global crop pollination. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 146-151.	3.3	618
11	RAPID EVOLUTION OF AN INVASIVE PLANT. Ecological Monographs, 2004, 74, 261-280.	2.4	573
12	MEASURING BEE DIVERSITY IN DIFFERENT EUROPEAN HABITATS AND BIOGEOGRAPHICAL REGIONS. Ecological Monographs, 2008, 78, 653-671.	2.4	562
13	Conservation biological control and enemy diversity on a landscape scale. Biological Control, 2007, 43, 294-309.	1.4	531
14	A global synthesis reveals biodiversity-mediated benefits for crop production. Science Advances, 2019, 5, eaax0121.	4.7	524
15	Functional identity and diversity of animals predict ecosystem functioning better than species-based indices. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142620.	1.2	467
16	Agricultural diversification promotes multiple ecosystem services without compromising yield. Science Advances, 2020, 6, .	4.7	405
17	Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7863-E7870.	3.3	401
18	Agricultural landscape simplification reduces natural pest control: A quantitative synthesis. Agriculture, Ecosystems and Environment, 2016, 221, 198-204.	2.5	393

#	Article	IF	CITATIONS
19	The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecology Letters, 2019, 22, 1083-1094.	3.0	364
20	Lifeâ€history traits predict species responses to habitat area and isolation: a crossâ€continental synthesis. Ecology Letters, 2010, 13, 969-979.	3.0	336
21	Combined effects of global change pressures on animal-mediated pollination. Trends in Ecology and Evolution, 2013, 28, 524-530.	4.2	320
22	The effectiveness of flower strips and hedgerows on pest control, pollination services and crop yield: a quantitative synthesis. Ecology Letters, 2020, 23, 1488-1498.	3.0	319
23	Ecological Intensification: Bridging the Gap between Science and Practice. Trends in Ecology and Evolution, 2019, 34, 154-166.	4.2	318
24	Specialization of Mutualistic Interaction Networks Decreases toward Tropical Latitudes. Current Biology, 2012, 22, 1925-1931.	1.8	290
25	Multiple stressors on biotic interactions: how climate change and alien species interact to affect pollination. Biological Reviews, 2010, 85, 777-795.	4.7	259
26	A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes. Global Change Biology, 2017, 23, 4946-4957.	4.2	259
27	Impacts of a pesticide on pollinator species richness at different spatial scales. Basic and Applied Ecology, 2010, 11, 106-115.	1.2	237
28	Neonicotinoid Insecticides and Their Impacts on Bees: A Systematic Review of Research Approaches and Identification of Knowledge Gaps. PLoS ONE, 2015, 10, e0136928.	1.1	236
29	How Agricultural Intensification Affects Biodiversity and Ecosystem Services. Advances in Ecological Research, 2016, 55, 43-97.	1.4	234
30	Time will tell: resource continuity bolsters ecosystem services. Trends in Ecology and Evolution, 2015, 30, 524-530.	4.2	224
31	Agricultural intensification and biodiversity partitioning in European landscapes comparing plants, carabids, and birds. , 2011, 21, 1772-1781.		221
32	Dispersal capacity and diet breadth modify the response of wild bees to habitat loss. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 2075-2082.	1.2	217
33	Insect pollination enhances seed yield, quality, and market value in oilseed rape. Oecologia, 2012, 169, 1025-1032.	0.9	215
34	Local and landscapeâ€level floral resources explain effects of wildflower strips on wild bees across four European countries. Journal of Applied Ecology, 2015, 52, 1165-1175.	1.9	208
35	Mixed effects of organic farming and landscape complexity on farmland biodiversity and biological control potential across Europe. Journal of Applied Ecology, 2011, 48, 570-579.	1.9	205
36	Drastic historic shifts in bumble-bee community composition in Sweden. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 309-315.	1.2	198

#	Article	IF	CITATIONS
37	Massâ€flowering crops dilute pollinator abundance in agricultural landscapes across Europe. Ecology Letters, 2016, 19, 1228-1236.	3.0	195
38	Contribution of insect pollinators to crop yield and quality varies with agricultural intensification. PeerJ, 2014, 2, e328.	0.9	183
39	International scientists formulate a roadmap for insect conservation and recovery. Nature Ecology and Evolution, 2020, 4, 174-176.	3.4	176
40	Flow and stability of natural pest control services depend on complexity and crop rotation at the landscape scale. Journal of Applied Ecology, 2013, 50, 345-354.	1.9	172
41	The potential for indirect effects between coâ€flowering plants via shared pollinators depends on resource abundance, accessibility and relatedness. Ecology Letters, 2014, 17, 1389-1399.	3.0	172
42	Agricultural Policies Exacerbate Honeybee Pollination Service Supply-Demand Mismatches Across Europe. PLoS ONE, 2014, 9, e82996.	1.1	171
43	Late-season mass-flowering red clover increases bumble bee queen and male densities. Biological Conservation, 2014, 172, 138-145.	1.9	163
44	The relationship between agricultural intensification and biological control: experimental tests across Europe. , 2011, 21, 2187-2196.		157
45	Meta-analysis reveals that pollinator functional diversity and abundance enhance crop pollination and yield. Nature Communications, 2019, 10, 1481.	5.8	150
46	Ten policies for pollinators. Science, 2016, 354, 975-976.	6.0	142
47	Alien plants associate with widespread generalist arbuscular mycorrhizal fungal taxa: evidence from a continental-scale study using massively parallel 454 sequencing. Journal of Biogeography, 2011, 38, 1305-1317.	1.4	137
48	EDITOR'S CHOICE: REVIEW: Trait matching of flower visitors and crops predicts fruit set better than trait diversity. Journal of Applied Ecology, 2015, 52, 1436-1444.	1.9	136
49	Assessing bee species richness in two Mediterranean communities: importance of habitat type and sampling techniques. Ecological Research, 2011, 26, 969-983.	0.7	135
50	Landscape context and habitat type as drivers of bee diversity in European annual crops. Agriculture, Ecosystems and Environment, 2009, 133, 40-47.	2.5	134
51	Landscape matrix modifies richness of plants and insects in grassland fragments. Ecography, 2012, 35, 259-267.	2.1	122
52	Insecticides Suppress Natural Enemies and Increase Pest Damage in Cabbage. Journal of Economic Entomology, 2011, 104, 782-791.	0.8	105
53	Integrated Crop Pollination: Combining strategies to ensure stable and sustainable yields of pollination-dependent crops. Basic and Applied Ecology, 2017, 22, 44-60.	1.2	101
54	Predator body sizes and habitat preferences predict predation rates in an agroecosystem. Basic and Applied Ecology, 2015, 16, 250-259.	1.2	100

#	Article	IF	CITATIONS
55	Scale as modifier in vegetation diversity experiments: effects on herbivores and predators. Oikos, 2003, 102, 440-448.	1.2	98
56	Experimental evidence that honeybees depress wild insect densities in a flowering crop. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161641.	1.2	94
57	Influence of habitat type and surrounding landscape on spider diversity in Swedish agroecosystems. Agriculture, Ecosystems and Environment, 2007, 122, 211-219.	2.5	92
58	Competition between managed honeybees and wild bumblebees depends on landscape context. Basic and Applied Ecology, 2016, 17, 609-616.	1.2	88
59	REPRODUCTION AND ENERGY RESERVES OF A PREDATORY CARABID BEETLE RELATIVE TO AGROECOSYSTEM COMPLEXITY. , 1998, 8, 846-853.		87
60	Density of insectâ€pollinated grassland plants decreases with increasing surrounding landâ€use intensity. Ecology Letters, 2014, 17, 1168-1177.	3.0	87
61	Organic farming in isolated landscapes does not benefit flower-visiting insects and pollination. Biological Conservation, 2010, 143, 1860-1867.	1.9	84
62	Exploiting ecosystem services in agriculture for increased food security. Global Food Security, 2018, 17, 57-63.	4.0	84
63	Crop diversity benefits carabid and pollinator communities in landscapes with semiâ€natural habitats. Journal of Applied Ecology, 2020, 57, 2170-2179.	1.9	83
64	Oviposition Preferences in Pine Sawflies: A Trade-Off between Larval Growth and Defence against Natural Enemies. Oikos, 1997, 79, 45.	1.2	82
65	When ecosystem services interact: crop pollination benefits depend on the level of pest control. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20122243.	1.2	81
66	Extinction debt for plants and flowerâ€visiting insects in landscapes with contrasting land use history. Diversity and Distributions, 2014, 20, 591-599.	1.9	80
67	Effect of habitat area and isolation on plant trait distribution in European forests and grasslands. Ecography, 2012, 35, 356-363.	2.1	78
68	The landscape matrix modifies the effect of habitat fragmentation in grassland butterflies. Landscape Ecology, 2012, 27, 121-131.	1.9	78
69	Betaâ€diversity patterns elucidate mechanisms of alien plant invasion in mountains. Global Ecology and Biogeography, 2013, 22, 450-460.	2.7	74
70	THE INFLUENCE OF MOVEMENT AND RESTING BEHAVIOR ON THE RANGE OF THREE CARABID BEETLES. Ecology, 1998, 79, 2113-2122.	1.5	73
71	Aphids and their natural enemies are differently affected by habitat features at local and landscape scales. Biological Control, 2012, 63, 222-229.	1.4	72
72	Traits related to species persistence and dispersal explain changes in plant communities subjected to habitat loss. Diversity and Distributions, 2012, 18, 898-908.	1.9	70

#	Article	IF	CITATIONS
73	Combined effects of agrochemicals and ecosystem services on crop yield across Europe. Ecology Letters, 2017, 20, 1427-1436.	3.0	70
74	Relationships between multiple biodiversity components and ecosystem services along a landscape complexity gradient. Biological Conservation, 2018, 218, 247-253.	1.9	68
75	Crop management modifies the benefits of insect pollination in oilseed rape. Agriculture, Ecosystems and Environment, 2015, 207, 61-66.	2.5	65
76	Reprint of "Conservation biological control and enemy diversity on a landscape scale―[Biol. Control 43 (2007) 294–309]. Biological Control, 2008, 45, 238-253.	1.4	64
77	Developing European conservation and mitigation tools for pollination services: approaches of the STEP (Status and Trends of European Pollinators) project. Journal of Apicultural Research, 2011, 50, 152-164.	0.7	64
78	Disentangling effects of habitat diversity and area on orthopteran species with contrasting mobility. Biological Conservation, 2010, 143, 2164-2171.	1.9	63
79	Landscape context and elevation affect pollinator communities in intensive apple orchards. Basic and Applied Ecology, 2012, 13, 681-689.	1.2	63
80	Pollination contribution to crop yield is often context-dependent: A review of experimental evidence. Agriculture, Ecosystems and Environment, 2019, 280, 16-23.	2.5	62
81	Ecological production functions for biological control services in agricultural landscapes. Methods in Ecology and Evolution, 2014, 5, 243-252.	2.2	60
82	How spatial scale shapes the generation and management of multiple ecosystem services. Ecosphere, 2017, 8, e01741.	1.0	60
83	Clothianidin seed-treatment has no detectable negative impact on honeybee colonies and their pathogens. Nature Communications, 2019, 10, 692.	5.8	57
84	Landscape crop diversity and semi-natural habitat affect crop pollinators, pollination benefit and yield. Agriculture, Ecosystems and Environment, 2021, 306, 107189.	2.5	57
85	Pollinators, pests and soil properties interactively shape oilseed rape yield. Basic and Applied Ecology, 2015, 16, 737-745.	1.2	55
86	Rightsâ€ofâ€way: a potential conservation resource. Frontiers in Ecology and the Environment, 2018, 16, 149-158.	1.9	53
87	Ecosystem function in predator–prey food webs—confronting dynamic models with empirical data. Journal of Animal Ecology, 2019, 88, 196-210.	1.3	52
88	Landscape composition influences farm management effects on farmland birds in winter: A pan-European approach. Agriculture, Ecosystems and Environment, 2010, 139, 571-577.	2.5	51
89	Management intensity at field and landscape levels affects the structure of generalist predator communities. Oecologia, 2014, 175, 971-983.	0.9	51
90	Large-scale pollination experiment demonstrates the importance of insect pollination in winter oilseed rape. Oecologia, 2016, 180, 759-769.	0.9	51

#	Article	IF	CITATIONS
91	Integrated pest and pollinator management – expanding the concept. Frontiers in Ecology and the Environment, 2021, 19, 283-291.	1.9	50
92	Possible host-parasite adaptations in honey bees infested byVarroa destructormites. Apidologie, 2007, 38, 525-533.	0.9	49
93	HARVESTING DISRUPTS BIOLOGICAL CONTROL OF HERBIVORES IN A SHORT-ROTATION COPPICE SYSTEM. , 2004, 14, 1624-1633.		48
94	Enhancing Soil Organic Matter as a Route to the Ecological Intensification of European Arable Systems. Ecosystems, 2018, 21, 1404-1415.	1.6	47
95	Annual flower strips support pollinators and potentially enhance red clover seed yield. Ecology and Evolution, 2018, 8, 7974-7985.	0.8	47
96	Field-level clothianidin exposure affects bumblebees but generally not their pathogens. Nature Communications, 2018, 9, 5446.	5.8	45
97	Predictive power of food web models based on body size decreases with trophic complexity. Ecology Letters, 2018, 21, 702-712.	3.0	38
98	Recovery of plant diversity in restored semiâ€natural pastures depends on adjacent land use. Applied Vegetation Science, 2015, 18, 413-422.	0.9	33
99	Feeding, Reproduction and Community Impact of a Predatory Carabid in Two Agricultural Habitats. Oikos, 1999, 87, 89.	1.2	32
100	Interactive effects of pests increase seed yield. Ecology and Evolution, 2016, 6, 2149-2157.	0.8	32
101	Species' traits influence ground beetle responses to farm and landscape level agricultural intensification in Europe. Journal of Insect Conservation, 2014, 18, 837-846.	0.8	31
102	Conservation Biological Control in Agricultural Landscapes. Advances in Botanical Research, 2017, 81, 333-360.	0.5	31
103	Combined heat and drought suppress rainfed maize and soybean yields and modify irrigation benefits in the USA. Environmental Research Letters, 2021, 16, 064023.	2.2	31
104	Diverse cropping systems enhanced yield but did not improve yield stability in a 52-year long experiment. Agriculture, Ecosystems and Environment, 2017, 247, 337-342.	2.5	31
105	Outbreak suppression by predators depends on spatial distribution of prey. Ecological Modelling, 2007, 201, 163-170.	1.2	30
106	Contrasting effects of habitat area and connectivity on evenness of pollinator communities. Ecography, 2014, 37, 544-551.	2.1	30
107	Species traits elucidate crop pest response to landscape composition: a global analysis. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20202116.	1.2	30
108	Crop rotations sustain cereal yields under a changing climate. Environmental Research Letters, 2020, 15, 124011.	2.2	30

#	Article	IF	CITATIONS
109	Stage Sensitivity to Food Limitation for a Generalist Arthropod Predator, Pterostichus cupreus (Coleoptera: Carabidae). Environmental Entomology, 1998, 27, 863-869.	0.7	29
110	Plant–pollinator networks in semiâ€natural grasslands are resistant to the loss of pollinators during blooming of massâ€flowering crops. Ecography, 2018, 41, 62-74.	2.1	29
111	Landscape simplification weakens the association between terrestrial producer and consumer diversity in Europe. Global Change Biology, 2017, 23, 3040-3051.	4.2	28
112	Response of ground beetle (Coleoptera, Carabidae) communities to changes in agricultural policies in Sweden over two decades. Agriculture, Ecosystems and Environment, 2013, 176, 63-69.	2.5	24
113	The impact of an insecticide on insect flower visitation and pollination in an agricultural landscape. Agricultural and Forest Entomology, 2010, 12, 259-266.	0.7	22
114	Towards Integrated Pest Management in Red Clover Seed Production. Journal of Economic Entomology, 2012, 105, 1620-1628.	0.8	22
115	Mobility and resource use influence the occurrence of pollinating insects in restored seminatural grassland fragments. Restoration Ecology, 2018, 26, 873-881.	1.4	22
116	Water stress and insect herbivory interactively reduce crop yield while the insect pollination benefit is conserved. Global Change Biology, 2021, 27, 71-83.	4.2	22
117	Above―and belowground insect herbivory modifies the response of a grassland plant community to nitrogen eutrophication. Ecology, 2017, 98, 545-554.	1.5	21
118	A framework to identify indicator species for ecosystem services in agricultural landscapes. Ecological Indicators, 2018, 91, 278-286.	2.6	21
119	Subsidy type and quality determine direction and strength of trophic cascades in arthropod food webs in agroecosystems. Journal of Applied Ecology, 2019, 56, 1982-1991.	1.9	21
120	Influence of crop edges on movement of generalist predators: a diffusion approach. Agricultural and Forest Entomology, 2002, 4, 21-30.	0.7	20
121	High mobility reduces betaâ€diversity among orthopteran communities – implications for conservation. Insect Conservation and Diversity, 2012, 5, 37-45.	1.4	20
122	Modeling bumble bee population dynamics with delay differential equations. Ecological Modelling, 2017, 351, 14-23.	1.2	20
123	Sustained functional composition of pollinators in restored pastures despite slow functional restoration of plants. Ecology and Evolution, 2017, 7, 3836-3846.	0.8	20
124	Landscape complexity is not a major trigger of species richness and food web structure of European cereal aphid parasitoids. BioControl, 2015, 60, 451-461.	0.9	19
125	<scp>CropPol</scp> : A dynamic, open and global database on crop pollination. Ecology, 2022, 103, e3614.	1.5	19
126	Crop management affects pollinator attractiveness and visitation in oilseed rape. Basic and Applied Ecology, 2018, 26, 82-88.	1.2	18

#	Article	IF	CITATIONS
127	Variation in pea aphid population development in three different habitats. Ecological Entomology, 1996, 21, 235-240.	1.1	17
128	Cereal aphid populations in non-crop habitats show strong density dependence. Journal of Applied Ecology, 2007, 44, 1013-1022.	1.9	17
129	Pollinator foraging flexibility mediates rapid plant-pollinator network restoration in semi-natural grasslands. Scientific Reports, 2019, 9, 15473.	1.6	17
130	Flower strips enhance abundance of bumble bee queens and males in landscapes with few honey bee hives. Biological Conservation, 2021, 263, 109363.	1.9	16
131	Allometric density responses in butterflies: the response to small and large patches by small and large species. Ecography, 2010, 33, 1149-1156.	2.1	15
132	Genetic and phenotypic differences between thistle populations in response to habitat and weed management practices. Biological Journal of the Linnean Society, 2010, 99, 797-807.	0.7	15
133	Pollen beetle mortality is increased by ground-dwelling generalist predators but not landscape complexity. Agriculture, Ecosystems and Environment, 2017, 250, 133-142.	2.5	15
134	Phenology and prediction of pea aphid infestations on peas. International Journal of Pest Management, 1995, 41, 109-113.	0.9	14
135	Population response to resource separation in conservation biological control. Biological Control, 2008, 47, 141-146.	1.4	14
136	Soil compaction and insect pollination modify impacts of crop rotation on nitrogen fixation and yield. Basic and Applied Ecology, 2016, 17, 617-626.	1.2	14
137	Using matrix models to explore the influence of temperature on population growth of arthropod pests. Agricultural and Forest Entomology, 2001, 3, 275-283.	0.7	13
138	Rapid assessment of historic, current and future habitat quality for biodiversity around UK Natura 2000 sites. Environmental Conservation, 2015, 42, 31-40.	0.7	13
139	Pest management and yield in spring oilseed rape without neonicotinoid seed treatments. Crop Protection, 2020, 137, 105261.	1.0	13
140	Organic fertilisation enhances generalist predators and suppresses aphid growth in the absence of specialist predators. Journal of Applied Ecology, 2021, 58, 1455-1465.	1.9	13
141	Insecticide resistance in pollen beetles over 7 years – a landscape approach. Pest Management Science, 2016, 72, 780-786.	1.7	11
142	From theory to experimental design—Quantifying a trait-based theory of predator-prey dynamics. PLoS ONE, 2018, 13, e0195919.	1.1	11
143	Evaluating predictive performance of statistical models explaining wild bee abundance in a massâ€flowering crop. Ecography, 2021, 44, 525-536.	2.1	11
144	Bees increase seed set of wild plants while the proportion of arable land has a variable effect on pollination in European agricultural landscapes. Plant Ecology and Evolution, 2021, 154, 341-350.	0.3	11

#	Article	IF	CITATIONS
145	Switch to ecological engineering would aid independence. Nature, 2008, 456, 570-570.	13.7	10
146	Establishment of a cross-European field site network in the ALARM project for assessing large-scale changes in biodiversity. Environmental Monitoring and Assessment, 2010, 164, 337-348.	1.3	10
147	The effects of reduced tillage and earlier seeding on flea beetle (Phyllotreta spp.) crop damage in spring oilseed rape (Brassica napus L.). Crop Protection, 2018, 107, 104-107.	1.0	10
148	Landscape Management and Resident Generalist Predators in Annual Crop Systems. , 2000, , 169-182.		10
149	Aboveground insect herbivory increases plant competitive asymmetry, while belowground herbivory mitigates the effect. PeerJ, 2016, 4, e1867.	0.9	10
150	Towards a modular theory of trophic interactions. Functional Ecology, 2023, 37, 26-43.	1.7	10
151	Linear infrastructure habitats increase landscape-scale diversity of plants but not of flower-visiting insects. Scientific Reports, 2020, 10, 21374.	1.6	9
152	Plant-microbe interactions in response to grassland herbivory and nitrogen eutrophication. Soil Biology and Biochemistry, 2021, 156, 108208.	4.2	9
153	Type of organic fertilizer rather than organic amendment per se increases abundance of soil biota. PeerJ, 2021, 9, e11204.	0.9	8
154	Annual flower strips and honeybee hive supplementation differently affect arthropod guilds and ecosystem services in a mass-flowering crop. Agriculture, Ecosystems and Environment, 2021, , 107754.	2.5	8
155	Farm performance and input self-sufficiency increases with functional crop diversity on Swedish farms. Ecological Economics, 2022, 198, 107465.	2.9	7
156	Above―and belowground insect herbivores mediate the impact of nitrogen eutrophication on the soil food web in a grassland ecosystem. Oikos, 2018, 127, 1272-1279.	1.2	6
157	Lethal and sublethal effects of toxicants on bumble bee populations: a modelling approach. Ecotoxicology, 2020, 29, 237-245.	1.1	6
158	Bumblebee queen mortality along roads increase with traffic. Biological Conservation, 2022, 272, 109643.	1.9	6
159	Historical change and drivers of insect pest abundances in red clover seed production. Agriculture, Ecosystems and Environment, 2016, 233, 318-324.	2.5	5
160	Effect of insect herbivory on plant community dynamics under contrasting water availability levels. Journal of Ecology, 2018, 106, 1819-1828.	1.9	5
161	Hydro-climatic controls explain variations in catchment-scale nitrogen use efficiency. Environmental Research Letters, 2020, 15, 094006.	2.2	5
162	Plant trait-mediated interactions between early and late herbivores on common figwort (Scrophularia nodosa) and effects on plant seed set. Ecoscience, 2011, 18, 375-381.	0.6	4

#	Article	IF	CITATIONS
163	Below-ground herbivory mitigates biomass loss from above-ground herbivory of nitrogen fertilized plants. Scientific Reports, 2020, 10, 12752.	1.6	2
164	PARAMETER ESTIMATION FOR AN ALLOMETRIC FOOD WEB MODEL. International Journal of Pure and Applied Mathematics, 2017, 114, .	0.2	2
165	Landâ€use intensity affects the potential for apparent competition within and between habitats. Journal of Animal Ecology, 2021, 90, 1891-1905.	1.3	1