
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1862894/publications.pdf Version: 2024-02-01

SEDCI FEDDED

#	Article	IF	CITATIONS
1	Malolactic fermentation in white wines. , 2022, , 177-185.		1
2	Influence of the Dry Yeast Preparation Method on Final Sparkling Wine Characteristics. Fermentation, 2022, 8, 313.	1.4	2
3	Structural analysis and biochemical properties of laccase enzymes from two <i>Pediococcus</i> species. Microbial Biotechnology, 2021, 14, 1026-1043.	2.0	21
4	Yeast-Bacteria Coinoculation. , 2019, , 99-114.		5
5	Immobilisation of yeasts on oak chips or cellulose powder for use in bottle-fermented sparkling wine. Food Microbiology, 2019, 78, 25-37.	2.1	12
6	Molecular characterization of Vitis vinifera L. local cultivars from volcanic areas (Canary Islands and Madeira) using SSR markers. Oeno One, 2019, 53, .	0.7	12
7	Improved detection and enumeration of yeasts in wine by Cells-qPCR. LWT - Food Science and Technology, 2018, 90, 90-97.	2.5	8
8	Direct and Rapid Detection and Quantification of Oenococcus oeni Cells in Wine by Cells-LAMP and Cells-qLAMP. Frontiers in Microbiology, 2018, 9, 1945.	1.5	4
9	Influence of yeast strains on managing wine acidity using Lactobacillus plantarum. Food Control, 2018, 92, 471-478.	2.8	21
10	Use of starter cultures of <i>Lactobacillus</i> to induce malolactic fermentation in wine. Australian Journal of Grape and Wine Research, 2017, 23, 15-21.	1.0	29
11	Influence of freezing temperatures prior to freeze-drying on viability of yeasts and lactic acid bacteria isolated from wine. Journal of Applied Microbiology, 2017, 122, 1603-1614.	1.4	41
12	Lowering histamine formation in a red Ribera del Duero wine (Spain) by using an indigenous O. oeni strain as a malolactic starter. International Journal of Food Microbiology, 2017, 244, 11-18.	2.1	25
13	Exploring the biodiversity of two groups of Oenococcus oeni isolated from grape musts and wines: Are they equally diverse?. Systematic and Applied Microbiology, 2017, 40, 1-10.	1.2	7
14	Cells-qPCR as a direct quantitative PCR method to avoid microbial DNA extractions in grape musts and wines. International Journal of Food Microbiology, 2017, 261, 25-34.	2.1	10
15	Recombinant laccase from Pediococcus acidilactici CECT 5930 with ability to degrade tyramine. PLoS ONE, 2017, 12, e0186019.	1.1	34
16	The use of coreâ€shell highâ€performance liquid chromatography column technology to improve biogenic amine quantification in wine. Journal of the Science of Food and Agriculture, 2016, 96, 1556-1561.	1.7	14
17	Selection of Lactobacillus strains to induce biological acidification in low acidity wines. LWT - Food Science and Technology, 2016, 73, 334-341.	2.5	20
18	A new fear in wine: Isolation of Staphylococcus epidermidis histamine producer. Food Control, 2016, 62, 142-149.	2.8	13

#	Article	IF	CITATIONS
19	Technological properties of Lactobacillus plantarum strains isolated from grape must fermentation. Food Microbiology, 2016, 57, 187-194.	2.1	80
20	Cloning and characterization of a new laccase from Lactobacillus plantarum J16 CECT 8944 catalyzing biogenic amines degradation. Applied Microbiology and Biotechnology, 2016, 100, 3113-3124.	1.7	63
21	Acetobacter musti sp. nov., isolated from Bobal grape must. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 957-961.	0.8	11
22	A novel culture medium for Oenococcus oeni malolactic starter production. LWT - Food Science and Technology, 2015, 64, 25-31.	2.5	10
23	Ability of <i>Kocuria varians</i> LTH 1540 To Degrade Putrescine: Identification and Characterization of a Novel Amine Oxidase. Journal of Agricultural and Food Chemistry, 2015, 63, 4170-4178.	2.4	10
24	Identification of a novel enzymatic activity from lactic acid bacteria able to degrade biogenic amines in wine. Applied Microbiology and Biotechnology, 2014, 98, 185-198.	1.7	90
25	Assessment of Trace Elements and Stable Isotopes of Three Ardeid Species at Birama Swamp, Cuba. Archives of Environmental Contamination and Toxicology, 2013, 65, 24-32.	2.1	3
26	Saccharomyces cerevisiae and Oenococcus oeni immobilized in different layers of a cellulose/starch gel composite for simultaneous alcoholic and malolactic wine fermentations. Process Biochemistry, 2013, 48, 1279-1284.	1.8	40
27	Malic Enzyme and Malolactic Enzyme Pathways Are Functionally Linked but Independently Regulated in Lactobacillus casei BL23. Applied and Environmental Microbiology, 2013, 79, 5509-5518.	1.4	45
28	Characterization of Lactobacillus isolates from fermented olives and their bacteriocin gene profiles. Food Microbiology, 2011, 28, 1514-1518.	2.1	32
29	Biogenic amine synthesis in high quality Tempranillo wines. Relationship with lactic acid bacteria and vinification conditions. Annals of Microbiology, 2011, 61, 191-198.	1.1	21
30	Erwinia piriflorinigrans sp. nov., a novel pathogen that causes necrosis of pear blossoms. International Journal of Systematic and Evolutionary Microbiology, 2011, 61, 561-567.	0.8	51
31	A polyphasic approach in order to identify dominant lactic acid bacteria during pasta manufacturing. LWT - Food Science and Technology, 2010, 43, 982-986.	2.5	11
32	The role of two families of bacterial enzymes in putrescine synthesis from agmatine via agmatine deiminase. International Microbiology, 2010, 13, 169-77.	1.1	28
33	Lactobacillus aquaticus sp. nov., isolated from a Korean freshwater pond. International Journal of Systematic and Evolutionary Microbiology, 2009, 59, 2215-2218.	0.8	13
34	Lactobacillus oeni sp. nov., from wine. International Journal of Systematic and Evolutionary Microbiology, 2009, 59, 2010-2014.	0.8	31
35	Effect of micro-oxygenation on the evolution of aromatic compounds in wines: Malolactic fermentation and ageing in wood. LWT - Food Science and Technology, 2009, 42, 391-401.	2.5	28
36	Factors affecting the production of putrescine from agmatine by <i>Lactobacillus hilgardii</i> X ₁ B isolated from wine. Journal of Applied Microbiology, 2008, 105, 158-165.	1.4	40

#	Article	IF	CITATIONS
37	Regulation ofhdcexpression and HDC activity by enological factors in lactic acid bacteria. Journal of Applied Microbiology, 2008, 105, 1544-1551.	1.4	32
38	Comparative survey of putrescine production from agmatine deamination in different bacteria. Food Microbiology, 2008, 25, 882-887.	2.1	28
39	Lactobacillus uvarum sp. nov. – A new lactic acid bacterium isolated from Spanish Bobal grape must. Systematic and Applied Microbiology, 2008, 31, 425-433.	1.2	26
40	Biogenic amine determination in wine fermented in oak barrels: Factors affecting formation. Food Research International, 2008, 41, 697-706.	2.9	56
41	Lactobacillus bobalius sp. nov., a lactic acid bacterium isolated from Spanish Bobal grape must. International Journal of Systematic and Evolutionary Microbiology, 2008, 58, 2699-2703.	0.8	24
42	Biogenic amine production by lactic acid bacteria, acetic bacteria and yeast isolated from wine. Food Control, 2007, 18, 1569-1574.	2.8	159
43	Tyramine and phenylethylamine production among lactic acid bacteria isolated from wine. International Journal of Food Microbiology, 2007, 115, 364-368.	2.1	53
44	Histamine, histidine, and growth-phase mediated regulation of the histidine decarboxylase gene in lactic acid bacteria isolated from wine. FEMS Microbiology Letters, 2006, 260, 84-90.	0.7	40
45	Lactobacillus vini sp. nov., a wine lactic acid bacterium homofermentative for pentoses. International Journal of Systematic and Evolutionary Microbiology, 2006, 56, 513-517.	0.8	52
46	Which lactic acid bacteria are responsible for histamine production in wine?. Journal of Applied Microbiology, 2005, 99, 580-586.	1.4	130
47	Polyphasic study of wine Lactobacillus strains: taxonomic implications. International Journal of Systematic and Evolutionary Microbiology, 2005, 55, 197-207.	0.8	97
48	Biogenic Amines in Wines from Three Spanish Regions. Journal of Agricultural and Food Chemistry, 2005, 53, 1119-1124.	2.4	173
49	Improved enzymatic method for the rapid determination of histamine in wine. Food Additives and Contaminants, 2004, 21, 1149-1154.	2.0	26
50	Conjugative plasmid pIP501 undergoes specific deletions after transfer from Lactococcus lactis to Oenococcus oeni. Archives of Microbiology, 2003, 180, 367-373.	1.0	22
51	Development of specific fluorescent oligonucleotide probes for in situ identification of wine lactic acid bacteria. FEMS Microbiology Letters, 2003, 225, 115-123.	0.7	88
52	16S-ARDRA, a Tool for Identification of Lactic Acid Bacteria Isolated from Grape Must and Wine. Systematic and Applied Microbiology, 2003, 26, 412-422.	1.2	164
53	NAD(P)H regeneration is the key for heterolactic fermentation of hexoses in Oenococcus oeni. Microbiology (United Kingdom), 2002, 148, 325-332.	0.7	55
54	The potential of positively-charged cellulose sponge for malolactic fermentation of wine, using Oenococcus oeni. Enzyme and Microbial Technology, 2001, 28, 415-419.	1.6	42

#	Article	IF	CITATIONS
55	The effects of freezing and freeze-drying ofOenococcus oeniupon induction of malolactic fermentation in red wine. International Journal of Food Science and Technology, 2000, 35, 75-79.	1.3	42
56	Malolactic fermentation in wine with high densities of non-proliferating Oenococcus oeni. World Journal of Microbiology and Biotechnology, 2000, 16, 805-810.	1.7	31
57	Title is missing!. Biotechnology Letters, 1999, 21, 349-353.	1.1	38
58	Continuous malolactic fermentation in red wine using free Oenococcus oeni. World Journal of Microbiology and Biotechnology, 1999, 15, 737-739.	1.7	20
59	Improvement of volatile composition of wines by controlled addition of malolactic bacteria. Food Research International, 1999, 32, 491-496.	2.9	134
60	Nucleotide Sequence of Plasmid p4028, a Cryptic Plasmid fromLeuconostoc oenos. Plasmid, 1996, 36, 67-74.	0.4	17
61	TransposonsTn916andTn925can transfer fromEnterococcus faecalistoLeuconostoc oenos. FEMS Microbiology Letters, 1996, 135, 179-185.	0.7	13
62	Transformation ofAspergillus parasiticususing autonomously replicating plasmids fromAspergillus nidulans. FEMS Microbiology Letters, 1994, 124, 35-41.	0.7	10
63	A selective medium for the isolation of malolactic mutants of Leuconostoc oenos. Letters in Applied Microbiology, 1994, 19, 451-453.	1.0	2
64	Nucleotide sequence of a Trichophyton mentagrophytes HindIII mitochondrial DNA fragment containing at RNA gene cluster. FEMS Microbiology Letters, 1993, 109, 151-157.	0.7	2
65	An improved medium for distinguishing between homofermentative and heterofermentative lactic acid bacteria. International Journal of Food Microbiology, 1993, 18, 37-42.	2.1	64
66	Molecular cloning ofTrichophyton mentagrophytes DNA sequences with promoter activity inEscherichia coli. World Journal of Microbiology and Biotechnology, 1992, 8, 196-198.	1.7	2
67	Transformation of the dermatophyte Trichophyton mentagrophytes to hygromycin B resistance. Infection and Immunity, 1989, 57, 2923-2925.	1.0	31
68	Presence of nucleosomes inPenicillium chrysogenum. Current Microbiology, 1987, 15, 151-154.	1.0	1
69	Aurintricarboxylic acid as a nuclease inhibitor in fungal protoplasts. FEMS Microbiology Letters, 1986, 36, 9-13.	0.7	6
70	Protoplasts fromPodospora anserina: Isolation, purification, and transformation. Current Microbiology, 1985, 12, 301-306.	1.0	9