Marco Musiani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1862759/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Determination of effective capacitance and film thickness from constant-phase-element parameters. Electrochimica Acta, 2010, 55, 6218-6227.	5.2	1,695
2	Constant-Phase-Element Behavior Caused by Resistivity Distributions in Films. Journal of the Electrochemical Society, 2010, 157, C452.	2.9	387
3	Dielectric Properties of Materials Showing Constant-Phase-Element (CPE) Impedance Response. Journal of the Electrochemical Society, 2013, 160, C215-C225.	2.9	370
4	Constant-Phase-Element Behavior Caused by Resistivity Distributions in Films. Journal of the Electrochemical Society, 2010, 157, C458.	2.9	295
5	Constant-phase-element behavior caused by inhomogeneous water uptake in anti-corrosion coatings. Electrochimica Acta, 2013, 87, 693-700.	5.2	131
6	Hydrogen evolution on porous Ni cathodes modified by spontaneous deposition of Ru or Ir. Electrochimica Acta, 2008, 53, 8310-8318.	5.2	73
7	Constant-Phase-Element Behavior Caused by Coupled Resistivity and Permittivity Distributions in Films. Journal of the Electrochemical Society, 2011, 158, C424.	2.9	63
8	Electrodeposition of Cu–Rh alloys and their use as cathodes for nitrate reduction. Electrochemistry Communications, 2012, 25, 91-93.	4.7	59
9	Determination of water uptake in organic coatings deposited on 2024 aluminium alloy: Comparison between impedance measurements and gravimetry. Progress in Organic Coatings, 2017, 112, 93-100.	3.9	58
10	The HER in alkaline media on Pt-modified three-dimensional Ni cathodes. International Journal of Hydrogen Energy, 2012, 37, 10507-10516.	7.1	54
11	Preparation of Pd-Modified Ni Foam Electrodes and Their Use as Anodes for the Oxidation of Alcohols in Basic Media. Electrocatalysis, 2012, 3, 48-58.	3.0	53
12	Determination of resistivity profiles in anti-corrosion coatings from constant-phase-element parameters. Progress in Organic Coatings, 2014, 77, 2076-2083.	3.9	46
13	Impedance study of the influence of chromates on the properties of waterborne coatings deposited on 2024 aluminium alloy. Corrosion Science, 2016, 109, 174-181.	6.6	41
14	Impedance analysis of the distributed resistivity of coatings in dry and wet conditions. Electrochimica Acta, 2015, 179, 452-459.	5.2	39
15	Identification of Resistivity Distributions in Dielectric Layers by Measurement Model Analysis of Impedance Spectroscopy. Electrochimica Acta, 2016, 219, 312-320.	5.2	38
16	Electrochemical Behaviour of Porous PbO 2 Layers Prepared by Oxygen Bubble Templated Anodic Deposition. Electrochimica Acta, 2016, 200, 259-267.	5.2	35
17	Preparation of porous oxide layers by oxygen bubble templated anodic deposition followed by galvanic displacement. Electrochimica Acta, 2017, 253, 11-20.	5.2	28
18	Preparation of Silverâ€Modified Nickel Foams by Galvanic Displacement and Their Use as Cathodes for the Reductive Dechlorination of Herbicides. ChemElectroChem, 2016, 3, 2084-2092.	3.4	27

MARCO MUSIANI

#	Article	IF	CITATIONS
19	Catalytic partial oxidation of methane over nanosized Rh supported on Fecralloy foams. International Journal of Hydrogen Energy, 2014, 39, 11473-11485.	7.1	26
20	Oxygen bubble–templated anodic deposition of porous PbO 2. Electrochemistry Communications, 2015, 60, 144-147.	4.7	26
21	Catalytic combustion of methanol on Pt–Fecralloy foams prepared by electrodeposition. Chemical Engineering Journal, 2016, 285, 276-285.	12.7	25
22	Oxidation of CO and CH4 on Pd–Fecralloy foam catalysts prepared by spontaneous deposition. Chemical Engineering Journal, 2013, 230, 422-431.	12.7	24
23	Catalytic partial oxidation of CH4–H2 mixtures over Ni foams modified with Rh and Pt. International Journal of Hydrogen Energy, 2012, 37, 17040-17051.	7.1	23
24	Reduction of Nitrate Ions at Rh-Modified Ni Foam Electrodes. Electrocatalysis, 2013, 4, 203-211.	3.0	20
25	Ni-coated graphite felt modified with Ag nanoparticles: A new electrode material for electro-reductive dechlorination. Journal of Electroanalytical Chemistry, 2019, 849, 113357.	3.8	19
26	Reductive dehalogenation of a chloroacetanilide herbicide in a flow electrochemical cell fitted with Agâ€modified Ni foams. Journal of Chemical Technology and Biotechnology, 2018, 93, 1572-1578.	3.2	18
27	Conversion of porous PbO2 layers through galvanic displacement reaction with Mn2+ ions. Electrochemistry Communications, 2016, 73, 59-62.	4.7	17
28	Spontaneous deposition of Pd onto Fe–Cr–Al alloys. Electrochimica Acta, 2012, 68, 114-122.	5.2	15
29	Ru/Ce/Ni Metal Foams as Structured Catalysts for the Methanation of CO2. Catalysts, 2021, 11, 13.	3.5	15
30	Electrochemical preparation of nanostructured CeO 2 -Pt catalysts on Fe-Cr-Al alloy foams for the low-temperature combustion of methanol. Chemical Engineering Journal, 2017, 317, 551-560.	12.7	11
31	Highly stable core–shell Pt-CeO2 nanoparticles electrochemically deposited onto Fecralloy foam reactors for the catalytic oxidation of CO. Journal of Industrial and Engineering Chemistry, 2018, 66, 404-410.	5.8	10
32	Porous oxide electrocatalysts for oxygen evolution reaction prepared through a combination of hydrogen bubble templated deposition, oxidation and galvanic displacement steps. Electrochimica Acta, 2018, 273, 454-461.	5.2	9
33	Investigation on the oxide-oxide galvanic displacement reactions employed in the preparation of electrocatalytic layers. Electrochimica Acta, 2020, 341, 136056.	5.2	9
34	Deposition of FeOOH layers onto porous PbO2 by galvanic displacement and their use as electrocatalysts for oxygen evolution reaction. Journal of Electroanalytical Chemistry, 2021, 880, 114844.	3.8	9
35	Preparation of 3D electrocatalysts and catalysts for gas-phase reactions, through electrodeposition or galvanic displacement. Journal of Applied Electrochemistry, 2015, 45, 715-725.	2.9	7
36	Oxide-oxide galvanic displacement reactions: Effect of the concentration of the ions released by the sacrificial oxide. Journal of Electroanalytical Chemistry, 2021, 896, 115199.	3.8	1