Gerald A Dienel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1862592/publications.pdf Version: 2024-02-01

CEDALD & DIENEL

#	Article	IF	CITATIONS
1	Glucose sparing by glycogenolysis (GSG) determines the relationship between brain metabolism and neurotransmission. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 844-860.	4.3	24
2	Brain glycogen content is increased in the acute and interictal chronic stages of the mouse pilocarpine model of epilepsy. Epilepsia Open, 2022, 7, 361-367.	2.4	6
3	Stop the rot. Enzyme inactivation at brain harvest prevents artifacts. Journal of Neurochemistry, 2021, 158, 1007-1031.	3.9	14
4	Metabolomic and Imaging Mass Spectrometric Assays of Labile Brain Metabolites: Critical Importance of Brain Harvest Procedures. Neurochemical Research, 2020, 45, 2586-2606.	3.3	11
5	Reevaluation of Astrocyte-Neuron Energy Metabolism with Astrocyte Volume Fraction Correction: Impact on Cellular Glucose Oxidation Rates, Glutamate–Glutamine Cycle Energetics, Glycogen Levels and Utilization Rates vs. Exercising Muscle, and Na+/K+ Pumping Rates. Neurochemical Research, 2020, 45, 2607-2630	3.3	28
6	Hypothesis: A Novel Neuroprotective Role for Glucose-6-phosphatase (G6PC3) in Brain—To Maintain Energy-Dependent Functions Including Cognitive Processes. Neurochemical Research, 2020, 45, 2529-2552.	3.3	6
7	Metabolomic Assays of Postmortem Brain Extracts: Pitfalls in Extrapolation of Concentrations of Glucose and Amino Acids to Metabolic Dysregulation In Vivo in Neurological Diseases. Neurochemical Research, 2019, 44, 2239-2260.	3.3	12
8	Development of a Model to Test Whether Glycogenolysis Can Support Astrocytic Energy Demands of Na+, K+-ATPase and Glutamate-Glutamine Cycling, Sparing an Equivalent Amount of Glucose for Neurons. Advances in Neurobiology, 2019, 23, 385-433.	1.8	9
9	Does shuttling of glycogenâ€derived lactate from astrocytes to neurons take place during neurotransmission and memory consolidation?. Journal of Neuroscience Research, 2019, 97, 863-882.	2.9	42
10	The "protected―glucose transport through the astrocytic endoplasmic reticulum is too slow to serve as a quantitativelyâ€important highway for nutrient delivery. Journal of Neuroscience Research, 2019, 97, 854-862.	2.9	10
11	Brain Glucose Metabolism: Integration of Energetics with Function. Physiological Reviews, 2019, 99, 949-1045.	28.8	442
12	Major Advances in Brain Glycogen Research: Understanding of the Roles of Glycogen Have Evolved from Emergency Fuel Reserve to Dynamic, Regulated Participant in Diverse Brain Functions. Advances in Neurobiology, 2019, 23, 1-16.	1.8	20
13	Glycogenolysis in Cerebral Cortex During Sensory Stimulation, Acute Hypoglycemia, and Exercise: Impact on Astrocytic Energetics, Aerobic Glycolysis, and Astrocyte-Neuron Interactions. Advances in Neurobiology, 2019, 23, 209-267.	1.8	22
14	Introduction to the Thematic Minireview Series: Brain glycogen metabolism. Journal of Biological Chemistry, 2018, 293, 7087-7088.	3.4	3
15	Cellular Origin of [¹⁸ F]FDG-PET Imaging Signals During Ceftriaxone-Stimulated Glutamate Uptake: Astrocytes and Neurons. Neuroscientist, 2018, 24, 316-328.	3.5	13
16	Trajectories of Brain Lactate and Re-visited Oxygen-Glucose Index Calculations Do Not Support Elevated Non-oxidative Metabolism of Glucose Across Childhood. Frontiers in Neuroscience, 2018, 12, 631.	2.8	12
17	The metabolic trinity, glucose–glycogen–lactate, links astrocytes and neurons in brain energetics, signaling, memory, and gene expression. Neuroscience Letters, 2017, 637, 18-25.	2.1	74
18	Determination of Glucose Utilization Rates in Cultured Astrocytes and Neurons with [14C]deoxyglucose: Progress, Pitfalls, and Discovery of Intracellular Glucose Compartmentation. Neurochemical Research, 2017, 42, 50-63.	3.3	9

GERALD A DIENEL

#	Article	IF	CITATIONS
19	Lack of appropriate stoichiometry: Strong evidence against an energetically important astrocyte–neuron lactate shuttle in brain. Journal of Neuroscience Research, 2017, 95, 2103-2125.	2.9	131
20	Organ Distribution of 13N Following Intravenous Injection of [13N]Ammonia into Portacaval-Shunted Rats. Neurochemical Research, 2017, 42, 1683-1696.	3.3	4
21	Fluxes of Lactate Into, From, and Among Gap Junction-Coupled Astroglia and Their Interaction With Noradrenaline. , 2017, , 145-166.		3
22	In memoriam Louis Sokoloff, M.D. 1921–2015. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 278-280.	4.3	1
23	Aerobic glycolysis during brain activation: adrenergic regulation and influence of norepinephrine on astrocytic metabolism. Journal of Neurochemistry, 2016, 138, 14-52.	3.9	118
24	Microdialysate concentration changes do not provide sufficient information to evaluate metabolic effects of lactate supplementation in brain-injured patients. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 1844-1864.	4.3	18
25	Biochemical, Metabolic, and Behavioral Characteristics of Immature Chronic Hyperphenylalanemic Rats. Neurochemical Research, 2016, 41, 16-32.	3.3	4
26	Contributions of glycogen to astrocytic energetics during brain activation. Metabolic Brain Disease, 2015, 30, 281-298.	2.9	90
27	Fluxes of lactate into, from, and among gap junction-coupled astrocytes and their interaction with noradrenaline. Frontiers in Neuroscience, 2014, 8, 261.	2.8	49
28	A dogmaâ€breaking concept: glutamate oxidation in astrocytes is the source of lactate during aerobic glycolysis in resting subjects. Journal of Neurochemistry, 2014, 131, 395-398.	3.9	45
29	Energy Metabolism in the Brain. , 2014, , 53-117.		8
30	Reduced clearance of proteins labeled with diisopropylfluorophosphate in portacaval-shunted rats. Metabolic Brain Disease, 2014, 29, 1041-1052.	2.9	2
31	Rapid manifestation of reactive astrogliosis in acute hippocampal brain slices. Glia, 2014, 62, 78-95.	4.9	71
32	Lactate Shuttling and Lactate use as Fuel after Traumatic Brain Injury: Metabolic Considerations. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 1736-1748.	4.3	66
33	Astrocytic energetics during excitatory neurotransmission: What are contributions of glutamate oxidation and glycolysis?. Neurochemistry International, 2013, 63, 244-258.	3.8	96
34	Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends in Neurosciences, 2013, 36, 587-597.	8.6	1,082
35	The unfolded protein response to endoplasmic reticulum stress in cultured astrocytes and rat brain during experimental diabetes. Neurochemistry International, 2013, 62, 784-795.	3.8	33
36	Regional registration of [6â€ ¹⁴ C]glucose metabolism during brain activation of αâ€syntrophin knockout mice. Journal of Neurochemistry, 2013, 125, 247-259.	3.9	9

#	Article	IF	CITATIONS
37	Energy Metabolism of the Brain. , 2012, , 200-231.		79
38	Fueling and Imaging Brain Activation. ASN Neuro, 2012, 4, AN20120021.	2.7	134
39	Brain Lactate Metabolism: The Discoveries and the Controversies. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 1107-1138.	4.3	396
40	Exploring and Mapping the World of Astrocytes. Neurochemical Research, 2012, 37, 2295-2298.	3.3	2
41	Reduced gap junctional communication among astrocytes in experimental diabetes: Contributions of altered connexin protein levels and oxidative–nitrosative modifications. Journal of Neuroscience Research, 2011, 89, 2052-2067.	2.9	34
42	Astrocytic Gap Junctional Communication is Reduced in Amyloid-β-Treated Cultured Astrocytes, but not in Alzheimer's Disease Transgenic Mice. ASN Neuro, 2010, 2, AN20100017.	2.7	25
43	Trafficking of Glucose, Lactate, and Amyloid-β from the Inferior Colliculus through Perivascular Routes. Journal of Cerebral Blood Flow and Metabolism, 2010, 30, 162-176.	4.3	78
44	Astrocytes are â€~Good Scouts': Being Prepared Also Helps Neighboring Neurons. Journal of Cerebral Blood Flow and Metabolism, 2010, 30, 1893-1894.	4.3	15
45	Hyperglycaemia and Diabetes Impair Gap Junctional Communication among Astrocytes. ASN Neuro, 2010, 2, AN20090048.	2.7	88
46	Exchangeâ€mediated dilution of brain lactate specific activity: implications for the origin of glutamate dilution and the contributions of glutamine dilution and other pathways. Journal of Neurochemistry, 2009, 109, 30-37.	3.9	35
47	Selective astrocytic gap junctional trafficking of molecules involved in the glycolytic pathway: impact on cellular brain imaging. Journal of Neurochemistry, 2009, 110, 857-869.	3.9	44
48	Astrocytes are poised for lactate trafficking and release from activated brain and for supply of glucose to neurons. Journal of Neurochemistry, 2009, 111, 522-536.	3.9	138
49	Imaging Brain Activation. Annals of the New York Academy of Sciences, 2008, 1147, 139-170.	3.8	40
50	Functional imaging of focal brain activation in conscious rats: Impact of [14C]glucose metabolite spreading and release. Journal of Neuroscience Research, 2007, 85, 3254-3266.	2.9	64
51	Astrocytic connexin distributions and rapid, extensive dye transfer via gap junctions in the inferior colliculus: Implications for [14C]glucose metabolite trafficking. Journal of Neuroscience Research, 2007, 85, 3267-3283.	2.9	45
52	Energy Metabolism in Astrocytes: High Rate of Oxidative Metabolism and Spatiotemporal Dependence on Glycolysis/Glycogenolysis. Journal of Cerebral Blood Flow and Metabolism, 2007, 27, 219-249.	4.3	516
53	A glycogen phosphorylase inhibitor selectively enhances local rates of glucose utilization in brain during sensory stimulation of conscious rats: implications for glycogen turnover. Journal of Neurochemistry, 2007, 102, 466-478.	3.9	111
54	Astrocyte activation <i>in vivo</i> during graded photic stimulation. Journal of Neurochemistry, 2007, 103, 1506-1522.	3.9	28

GERALD A DIENEL

#	Article	IF	CITATIONS
55	Astrocyte activation in working brain: Energy supplied by minor substrates. Neurochemistry International, 2006, 48, 586-595.	3.8	77
56	Activation of astrocytes in brain of conscious rats during acoustic stimulation: acetate utilization in working brain. Journal of Neurochemistry, 2005, 92, 934-947.	3.9	84
57	Astrocytic contributions to bioenergetics of cerebral ischemia. Clia, 2005, 50, 362-388.	4.9	134
58	Lactate transport and transporters: General principles and functional roles in brain cells. Journal of Neuroscience Research, 2005, 79, 11-18.	2.9	138
59	Lactate muscles its way into consciousness: fueling brain activation. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2004, 287, R519-R521.	1.8	10
60	Nutrition during brain activation: does cell-to-cell lactate shuttling contribute significantly to sweet and sour food for thought?. Neurochemistry International, 2004, 45, 321-351.	3.8	153
61	Glial biology: functional interactions among glia and neurons. Neurochemistry International, 2004, 45, 189-190.	3.8	1
62	Behavioral training increases local astrocytic metabolic activity but does not alter outcome of mild transient ischemia. Brain Research, 2003, 961, 201-212.	2.2	12
63	Effect of reactive cell density on net [2-14C]acetate uptake into rat brain: labeling of clusters containing GFAP+- and lectin+-immunoreactive cells. Neurochemistry International, 2003, 42, 359-374.	3.8	8
64	Neighborly interactions of metabolically-activated astrocytes in vivo. Neurochemistry International, 2003, 43, 339-354.	3.8	84
65	Energy metabolism in the brain. International Review of Neurobiology, 2002, 51, 1-IN4.	2.0	122
66	Regional Reductions of Transketolase in Thiamine-Deficient Rat Brain. Journal of Neurochemistry, 2002, 67, 684-691.	3.9	19
67	High Glycogen Levels in Brains of Rats with Minimal Environmental Stimuli: Implications for Metabolic Contributions of Working Astrocytes. Journal of Cerebral Blood Flow and Metabolism, 2002, 22, 1476-1489.	4.3	158
68	Generalized Sensory Stimulation of Conscious Rats Increases Labeling of Oxidative Pathways of Glucose Metabolism When the Brain Glucose–Oxygen Uptake Ratio Rises. Journal of Cerebral Blood Flow and Metabolism, 2002, 22, 1490-1502.	4.3	106
69	β-Adrenergics enhance brain extraction of levodopa. Movement Disorders, 2002, 17, 54.	3.9	2
70	High Glycogen Levels in Brains of Rats With Minimal Environmental Stimuli: Implications for Metabolic Contributions of Working Astrocytes. Journal of Cerebral Blood Flow and Metabolism, 2002, , 1476-1489.	4.3	60
71	Generalized Sensory Stimulation of Conscious Rats Increases Labeling of Oxidative Pathways of Glucose Metabolism When the Brain Glucose???Oxygen Uptake Ratio Rises. Journal of Cerebral Blood Flow and Metabolism, 2002, , 1490-1502.	4.3	35
72	Local uptake of14C-labeled acetate and butyrate in rat brain in vivo during spreading cortical depression. Journal of Neuroscience Research, 2001, 66, 812-820.	2.9	47

GERALD A DIENEL

#	Article	IF	CITATIONS
73	Glucose and lactate metabolism during brain activation. Journal of Neuroscience Research, 2001, 66, 824-838.	2.9	282
74	Enhanced Acetate and Glucose Utilization during Graded Photic Stimulation: Neuronal-Glial Interactions in Vivo. Annals of the New York Academy of Sciences, 1999, 893, 279-281.	3.8	11
75	Rapid Efflux of Lactate from Cerebral Cortex during K+-Induced Spreading Cortical Depression. Journal of Cerebral Blood Flow and Metabolism, 1999, 19, 380-392.	4.3	83
76	Cerebral Oxygen/Glucose Ratio is Low during Sensory Stimulation and Rises above Normal during Recovery: Excess Glucose Consumption during Stimulation is Not Accounted for by Lactate Efflux from or Accumulation in Brain Tissue. Journal of Cerebral Blood Flow and Metabolism, 1999, 19, 393-400.	4.3	163
77	Determination of local brain glucose level with [14C]methylglucose: effects of glucose supply and demand. American Journal of Physiology - Endocrinology and Metabolism, 1997, 273, E839-E849.	3.5	19
78	Influence of Clucose Supply and Demand on Determination of Brain Glucose Content with Labeled Methylglucose. Journal of Cerebral Blood Flow and Metabolism, 1996, 16, 439-449.	4.3	22
79	Labeling of Metabolic Pools by [6- ¹⁴ C]Glucose during K ⁺ -Induced Stimulation of Glucose Utilization in Rat Brain. Journal of Cerebral Blood Flow and Metabolism, 1995, 15, 97-110.	4.3	57
80	Analysis of Time Courses of Metabolic Precursors and Products in Heterogeneous Rat Brain Tissue: Limitations of Kinetic Modeling for Predictions of Intracompartmental Concentrations from Total Tissue Activity. Journal of Cerebral Blood Flow and Metabolism, 1995, 15, 474-484.	4.3	9
81	Brain Glucose Levels in Portacaval-Shunted Rats with Chronic, Moderate Hyperammonemia: Implications for Determination of Local Cerebral Glucose Utilization. Journal of Cerebral Blood Flow and Metabolism, 1994, 14, 113-124.	4.3	13
82	Metabolites of 2-Deoxy-[14C]Glucose in Plasma and Brain: Influence on Rate of Glucose Utilization Determined with Deoxyglucose Method in Rat Brain. Journal of Cerebral Blood Flow and Metabolism, 1993, 13, 315-327.	4.3	29
83	Synthesis of Deoxyglucose-1-Phosphate, Deoxyglucose-1,6-Bisphosphate, and Other Metabolites of 2-Deoxy-D-[14C]Glucose in Rat Brain In Vivo: Influence of Time and Tissue Glucose Level. Journal of Neurochemistry, 1993, 60, 2217-2231.	3.9	31
84	Direct Measurement of the λ of the Lumped Constant of the Deoxyglucose Method in Rat Brain: Determination of λ and Lumped Constant from Tissue Glucose Concentration or Equilibrium Brain/Plasma Distribution Ratio for Methylglucose. Journal of Cerebral Blood Flow and Metabolism, 1991, 11, 25-34.	4.3	72
85	Modeling the Dependence of Hexose Distribution Volumes in Brain on Plasma Glucose Concentration: Implications for Estimation of the Local 2-Deoxyglucose Lumped Constant. Journal of Cerebral Blood Flow and Metabolism, 1991, 11, 171-182.	4.3	49
86	Acid Lability of Metabolites of 2-Deoxyglucose in Rat Brain: Implications for Estimates of Kinetic Parameters of Deoxyglucose Phosphorylation and Transport Between Blood and Brain. Journal of Neurochemistry, 1990, 54, 1440-1448.	3.9	33
87	Metabolic Stability of 3-O-Methyl-d-Glucose in Brain and Other Tissues. Journal of Neurochemistry, 1990, 55, 989-1000.	3.9	34
88	Direct Chemical Measurement of the λ of the Lumped Constant of the [14C]Deoxyglucose Method in Rat Brain: Effects of Arterial Plasma Glucose Level on the Distribution Spaces of [14C]Deoxyglucose and Glucose and on λ. Journal of Cerebral Blood Flow and Metabolism, 1989, 9, 304-314.	4.3	36
89	Deoxyglucose-6-Phosphate Stability In Vivo and the Deoxyglucose Method: Response to Comments of Hawkins and Miller. Journal of Neurochemistry, 1987, 49, 1949-1960.	3.9	35
90	Chronic Hyperphenylalaninemia Produces Cerebral Hyperglycinemia in Immature Rats. Journal of Neurochemistry, 1981, 36, 34-43.	3.9	15

#	Article	IF	CITATIONS
91	Distribution of mitochondrial enzymes between the perikaryal and synaptic fractions of immature and adult rat brain. Biochimica Et Biophysica Acta - General Subjects, 1977, 496, 484-494.	2.4	46