
Chia-Liang Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1862197/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid using graphene/size-selected Pt nanocomposites. Biosensors and Bioelectronics, 2011, 26, 3450-3455.	5.3	488
2	Microwave-Assisted Synthesis of a Core–Shell MWCNT/GONR Heterostructure for the Electrochemical Detection of Ascorbic Acid, Dopamine, and Uric Acid. ACS Nano, 2011, 5, 7788-7795.	7.3	303
3	Effect of chemical doping of boron and nitrogen on the electronic, optical, and electrochemical properties of carbon nanotubes. Progress in Materials Science, 2013, 58, 565-635.	16.0	276
4	Synthesis of CuO/graphene nanocomposites for nonenzymatic electrochemical glucose biosensor applications. Electrochimica Acta, 2012, 82, 152-157.	2.6	225
5	Ultrafine Platinum Nanoparticles Uniformly Dispersed on Arrayed CNx Nanotubes with High Electrochemical Activity. Chemistry of Materials, 2005, 17, 3749-3753.	3.2	206
6	Graphene grown on stainless steel as a high-performance and ecofriendly anti-corrosion coating for polymer electrolyte membrane fuel cell bipolar plates. Journal of Power Sources, 2015, 282, 248-256.	4.0	140
7	A reusable magnetic graphene oxide-modified biosensor for vascular endothelial growth factor detection in cancer diagnosis. Biosensors and Bioelectronics, 2015, 67, 431-437.	5.3	103
8	Atomic-Scale Deformation in N-Doped Carbon Nanotubes. Journal of the American Chemical Society, 2006, 128, 8368-8369.	6.6	96
9	Graphene Nanoribbon-Supported PtPd Concave Nanocubes for Electrochemical Detection of TNT with High Sensitivity and Selectivity. Analytical Chemistry, 2015, 87, 12262-12269.	3.2	96
10	A novel core–shell multi-walled carbon nanotube@graphene oxide nanoribbon heterostructure as a potential supercapacitor material. Journal of Materials Chemistry A, 2013, 1, 11237.	5.2	90
11	Growth mechanism, structure and IR photoluminescence studies of indium nitride nanorods. Journal of Crystal Growth, 2004, 269, 87-94.	0.7	88
12	Ultrasensitive and highly stable nonenzymatic glucose sensor by a CuO/graphene-modified screen-printed carbon electrode integrated with flow-injection analysis. Electrochemistry Communications, 2013, 30, 91-94.	2.3	86
13	Arrayed CNx NT–RuO2 nanocomposites directly grown on Ti-buffered Si substrate for supercapacitor applications. Electrochemistry Communications, 2007, 9, 239-244.	2.3	84
14	Nitrogen and sulfur co-doped graphene nanoribbons: A novel metal-free catalyst for high performance electrochemical detection of 2, 4, 6-trinitrotoluene (TNT). Carbon, 2018, 126, 328-337.	5.4	79
15	Ferroelectric characteristics of oriented Pb(Zr1â^'xTix)O3 films. Journal of Applied Physics, 2001, 90, 2970-2974.	1.1	78
16	A low-cost counter electrode of ITO glass coated with a graphene/Nafion® composite film for use in dye-sensitized solar cells. Carbon, 2012, 50, 4192-4202.	5.4	77
17	Multiwalled Carbon Nanotube@Reduced Graphene Oxide Nanoribbon as the Counter Electrode for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 16626-16634.	1.5	76
18	Synthesis of PEDOT-modified graphene composite materials as flexible electrodes for energy storage and conversion applications. International Journal of Hydrogen Energy, 2012, 37, 13880-13886.	3.8	73

CHIA-LIANG SUN

#	Article	IF	CITATIONS
19	Role of the Metalâ€Oxide Support in the Catalytic Activity of Pd Nanoparticles for Ethanol Electrooxidation in Alkaline Media. ChemElectroChem, 2016, 3, 218-227.	1.7	73
20	Graphene and other carbon sorbents for selective adsorption of thiophene from liquid fuel. AICHE Journal, 2013, 59, 29-32.	1.8	69
21	Biodistribution of PEGylated graphene oxide nanoribbons and their application in cancer chemo-photothermal therapy. Carbon, 2014, 74, 83-95.	5.4	69
22	Printed Combinatorial Sensors for Simultaneous Detection of Ascorbic Acid, Uric Acid, Dopamine, and Nitrite. ACS Omega, 2017, 2, 4245-4252.	1.6	67
23	Nano-scale chemical imaging of a single sheet of reduced graphene oxide. Journal of Materials Chemistry, 2011, 21, 14622.	6.7	64
24	Stack gate PZT/Al2O3 one transistor ferroelectric memory. IEEE Electron Device Letters, 2001, 22, 336-338.	2.2	58
25	Interconnected core–shell carbon nanotube–graphene nanoribbon scaffolds for anchoring cobalt oxides as bifunctional electrocatalysts for oxygen evolution and reduction. Journal of Materials Chemistry A, 2015, 3, 13371-13376.	5.2	51
26	Synthesis of size-selected Pt nanoparticles supported on sulfonated graphene with polyvinyl alcohol for methanol oxidation in alkaline solutions. Journal of Power Sources, 2014, 254, 298-305.	4.0	48
27	Particle size effects of sulfonated graphene supported Pt nanoparticles on ethanol electrooxidation. Electrochimica Acta, 2015, 162, 282-289.	2.6	46
28	Effect of annealing temperature on physical and electrical properties of Bi3.25La0.75Ti3O12 thin films on Al2O3-buffered Si. Applied Physics Letters, 2002, 80, 1984-1986.	1.5	41
29	First-Principles Calculations of Hydrogen Generation Due to Water Splitting on Polar GaN Surfaces. Journal of Physical Chemistry C, 2010, 114, 18228-18232.	1.5	41
30	Atomistic nucleation sites of Pt nanoparticles on N-doped carbon nanotubes. Nanoscale, 2013, 5, 6812.	2.8	35
31	Nanocomposite Graphene/Pt Electrocatalyst as Economical Counter Electrode for Dye‧ensitized Solar Cells. ChemElectroChem, 2014, 1, 416-425.	1.7	35
32	Soft Electrochemical Probes for Mapping the Distribution of Biomarkers and Injected Nanomaterials in Animal and Human Tissues. Angewandte Chemie - International Edition, 2017, 56, 16498-16502.	7.2	35
33	Bi3.25La0.75Ti3O12 thin films on ultrathin Al2O3 buffered Si for ferroelectric memory application. Applied Physics Letters, 2002, 80, 3168-3170.	1.5	30
34	Ternary PtRuNi Nanocatalysts Supported on N-Doped Carbon Nanotubes: Deposition Process, Material Characterization, and Electrochemistry. Journal of the Electrochemical Society, 2009, 156, B1249.	1.3	29
35	Synthesis of short graphene oxide nanoribbons for improved biomarker detection of Parkinson's disease. Biosensors and Bioelectronics, 2015, 67, 327-333.	5.3	28
36	The effects of ionic liquid on the electrochemical sensing performance of graphene- and carbon nanotube-based electrodes. Analyst, The, 2013, 138, 576-582.	1.7	25

CHIA-LIANG SUN

#	Article	IF	CITATIONS
37	Core–shell structured multiwall carbon nanotube–graphene oxide nanoribbon and its N-doped variant as anodes for high-power microbial fuel cells. Sustainable Energy and Fuels, 2020, 4, 5339-5351.	2.5	25
38	A Multiâ€Walled Carbon Nanotube Core with Graphene Oxide Nanoribbon Shell as Anode Material for Sodium Ion Batteries. Advanced Materials Interfaces, 2016, 3, 1600357.	1.9	20
39	Low-Temperature CVD Graphene Nanostructures on Cu and Their Corrosion Properties. Materials, 2018, 11, 1989.	1.3	15
40	High performance non-enzymatic graphene-based glucose fuel cell operated under moderate temperatures and a neutral solution. Journal of the Taiwan Institute of Chemical Engineers, 2019, 95, 48-54.	2.7	15
41	Antioxidant Graphene Oxide Nanoribbon as a Novel Whitening Agent Inhibits Microphthalmia-Associated Transcription Factor-Related Melanogenesis Mechanism. ACS Omega, 2020, 5, 6588-6597.	1.6	15
42	Investigation of the adsorption of size-selected Pt colloidal nanoparticles on high-surface-area graphene powders for methanol oxidation reaction. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 1025-1030.	2.7	14
43	Self-aligned graphene oxide nanoribbon stack with gradient bandgap for visible-light photodetection. Nano Energy, 2016, 27, 114-120.	8.2	14
44	Carbon Nanotubes Grown Directly on Ti Electrodes and Enhancement of Their Electrochemical Properties by Nitric Acid Treatment. Electrochemical and Solid-State Letters, 2006, 9, A5.	2.2	13
45	Enhanced Electrochemical Properties of Arrayed CN[sub x] Nanotubes Directly Grown on Ti-Buffered Silicon Substrates. Electrochemical and Solid-State Letters, 2006, 9, A175.	2.2	12
46	Catalysis in Fuel Cells and Hydrogen Production. , 2013, , 217-270.		12
47	Nanoporous core–shell–structured multi-wall carbon nanotube/graphene oxide nanoribbons as cathodes and protection layer for aqueous zinc-ion capacitors: Mechanism study of zinc dendrite suppression by in-situ transmission X-ray microscopy. Journal of Power Sources, 2022, 541, 231627.	4.0	12
48	Characteristics of Pb(Zr[sub 0.53]Ti[sub 0.47])O[sub 3] on Metal and Al[sub 2]O[sub 3]/Si Substrates. Journal of the Electrochemical Society, 2001, 148, F203.	1.3	11
49	Characterization of BaPbO3 and Ba(Pb1â^'Bi)O3 thin films. Materials Chemistry and Physics, 2003, 78, 507-511.	2.0	11
50	Low voltage lead titanate/Si one-transistor ferroelectric memory with good device characteristics. Applied Physics Letters, 2004, 85, 4726-4728.	1.5	9
51	Superior electrochemical performance of CN[sub x] nanotubes using TiSi[sub 2] buffer layer on Si substrates. Journal of Vacuum Science & Technology B, 2006, 24, 87.	1.3	9
52	Size Effects of Pt Nanoparticle/Graphene Composite Materials on the Electrochemical Sensing of Hydrogen Peroxide. Journal of Nanomaterials, 2015, 2015, 1-7.	1.5	7
53	Effects of zirconium substitution on the electrical and physical properties of metal-ferroelectric (BiFeO3)-insulator (HfO2)-silicon structures for non-volatile memories. Microelectronic Engineering, 2013, 109, 142-147.	1.1	6
54	Fabrication of flat capped carbon nanotubes using an arc-discharge method assisted with a Sm-Co catalyst. Journal of Materials Science: Materials in Electronics, 2011, 22, 1387-1392.	1.1	5

CHIA-LIANG SUN

#	Article	IF	CITATIONS
55	Application of nanoporous core–shell structured multi-walled carbon nanotube–graphene oxide nanoribbons in electrochemical biosensors. Microchemical Journal, 2022, 179, 107586.	2.3	5
56	Mesoporous active carbon dispersed with ultra-fine platinum nanoparticles and their electrochemical properties. Diamond and Related Materials, 2009, 18, 303-306.	1.8	4
57	Electrical and structural characteristics of PbTiO3 thin films with ultra-thin Al2O3 buffer layers. Materials Chemistry and Physics, 2003, 78, 412-415.	2.0	3
58	Effect of processing temperature on characteristics of metal-ferroelectric (BiFeO3)-insulator (HfLaO)-silicon capacitors. Thin Solid Films, 2010, 518, 7433-7436.	0.8	3
59	Effect of Zr/Ti Ratios on Characterization of Pb(Zr[sub x]Ti[sub 1â^x])O[sub 3] Thin Films on Al[sub 2]O[sub 3] Buffered Si for One-Transistor Memory Applications. Journal of the Electrochemical Society, 2003, 150, C187.	1.3	2
60	Self-aligned gate dielectric in carbon nanotube field-effect transistors by anodic oxidation of aluminium. Journal of Experimental Nanoscience, 2013, 8, 138-144.	1.3	2
61	Visible-Light-Assisted Photoelectrochemical Biosensing of Uric Acid Using Metal-Free Graphene Oxide Nanoribbons. Nanomaterials, 2021, 11, 2693.	1.9	2
62	Role of Interface Reaction at High Temperature in Electrical Characteristics of Bi[sub 3.25]La[sub 0.75]Ti[sub 3]O[sub 12]/Al[sub 2]O[sub 3]/Si Capacitors. Journal of the Electrochemical Society, 2003, 150, C600.	1.3	1
63	Weiche elektrochemische Sonden zum Abbilden der Verteilung von Biomarkern und injizierten Nanomaterialien in tierischem und menschlichem Gewebe. Angewandte Chemie, 2017, 129, 16722-16727.	1.6	0