Yulia Tertyshnaya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1862177/publications.pdf Version: 2024-02-01

<u>ΥΠΙΙΑ ΤΕΡΤΥΣΗΝΑΥΑ</u>

#	Article	IF	CITATIONS
1	Environmentally friendly films based on poly(3-hydroxybutyrate) and poly(lactic acid): A review. Russian Journal of Physical Chemistry B, 2014, 8, 726-732.	0.2	26
2	Degradation of poly(3-hydroxybutyrate) and its blends during treatment with UV light and water. Polymer Science - Series B, 2013, 55, 164-168.	0.3	24
3	Impact of Water and UV Irradiation on Nonwoven Polylactide/Natural Rubber Fiber. Polymers, 2021, 13, 461.	2.0	20
4	Composite Materials Based on Polylactide and Poly-3-hydroxybutyrate "Green―Polymers. Russian Journal of Applied Chemistry, 2018, 91, 417-423.	0.1	18
5	Effect of UV Irradiation on the Structural and Dynamic Characteristics of Polylactide and Its Blends with Polyethylene. Russian Journal of Physical Chemistry B, 2020, 14, 167-175.	0.2	18
6	Thermal oxidation and degradation of poly-3-hydroxybutyrate nonwoven materials. Russian Journal of Physical Chemistry B, 2015, 9, 498-503.	0.2	12
7	Effect of temperature on the molecular mobility in polylactide. Polymer Science - Series A, 2016, 58, 50-56.	0.4	12
8	Electrospun Polylactide/Natural Rubber Fibers: Effect Natural Rubber Content on Fiber Morphology and Properties. Polymers, 2021, 13, 2232.	2.0	12
9	Thermooxidative degradation of blends based on poly(3-Hydroxybutyrate). Specifics of the process. Russian Journal of Physical Chemistry B, 2012, 6, 38-41.	0.2	11
10	Thermal oxidation and structure of polylactide–polyethylene blends. Russian Journal of Physical Chemistry B, 2016, 10, 825-829.	0.2	11
11	Degradation of Polylactide—Polyethylene Binary Blends in Soil. Russian Journal of Applied Chemistry, 2019, 92, 767-774.	0.1	11
12	Effect of aqueous medium on the molecular mobility of polylactide. Russian Journal of Physical Chemistry B, 2017, 11, 531-537.	0.2	10
13	Specific structural features of crystalline regions in biodegradable composites of poly-3-hydroxybutyrate with chitosan. Russian Journal of Applied Chemistry, 2017, 90, 1443-1453.	0.1	10
14	Thermal Properties and Dynamic Characteristics of Electrospun Polylactide/Natural Rubber Fibers during Disintegration in Soil. Polymers, 2022, 14, 1058.	2.0	10
15	Morphological features of composites prepared from polylactide and iron(III)â^'tetraphenylporphyrin complex. Russian Journal of Physical Chemistry B, 2017, 11, 828-832.	0.2	8
16	Morphology and Antibacterial Properties of Composites Based on Polylactide and Manganese(III) Complex with Tetraphenylporphyrin. Russian Journal of Physical Chemistry B, 2020, 14, 1022-1027.	0.2	8
17	Influence of different factors on the destruction of films based on polylactic acid and oxidized polyethylene. AIP Conference Proceedings, 2016, , .	0.3	7
18	Effect of the Concentration of the Spinning Solution on the Morphology and Properties of Nonwoven Poly-3-Hydroxybutyrate Fibers. Russian Journal of Physical Chemistry B, 2018, 12, 293-299.	0.2	7

YULIA TERTYSHNAYA

#	Article	IF	CITATIONS
19	Influence of ultraviolet on polylactide degradation. AIP Conference Proceedings, 2017, , .	0.3	6
20	Biodestruction of Polylactide and Poly(3-Hydroxybutyrate) Non-Woven Materials by Micromycetes. Fibre Chemistry, 2020, 52, 43-47.	0.0	6
21	Biodegradable materials containing recycled polymers. IOP Conference Series: Materials Science and Engineering, 2018, 347, 012015.	0.3	5
22	Hydrolytic Degradation of Polylactide in Distilled Water and Seawater. Polymer Science - Series D, 2020, 13, 306-310.	0.2	5
23	Polylactide Fiber Materials and their Application in Agriculture. Key Engineering Materials, 0, 910, 617-622.	0.4	5
24	Photo-oxidative degradation of poly-3-hydroxybutyrate and polyethylene based films. Russian Journal of Physical Chemistry B, 2015, 9, 652-657.	0.2	4
25	Solid-Phase Thermal Oxidation of Polyethylene—Polylactide Blends. Russian Journal of Physical Chemistry B, 2019, 13, 354-361.	0.2	4
26	Impact of UV treatment on polylactide–polyethylene film properties. IOP Conference Series: Materials Science and Engineering, 2019, 525, 012043.	0.3	4
27	Effect of Exposure in Aqueous Medium at Elevated Temperature on the Structure of Nonwoven Materials Based on Polylactide and Natural Rubber. Polymer Science - Series A, 2021, 63, 515-525.	0.4	4
28	The effect of environmental factors on biodegradable polylactide-based materials. Polymer Science - Series D, 2017, 10, 289-292.	0.2	3
29	Degradation of Polylactide–Polyethylene Blends in Aqueous Media. Russian Journal of Applied Chemistry, 2021, 94, 639-646.	0.1	3
30	Oxidation and biodegradation of polymeric composites based on polylactide: structure and properties. IOP Conference Series: Materials Science and Engineering, 2020, 848, 012071.	0.3	2
31	Kinetic patterns for thermal oxidation of binary and ternary blends based on polylactide and polyethylene. Russian Chemical Bulletin, 2021, 70, 1791-1797.	0.4	2
32	The Spectral Characteristics and Morphology of a Composite Material Based on Polylactide and Alkoxy-Substituted meso-Arylporphyrins. Polymer Science - Series B, 2021, 63, 905-914.	0.3	2
33	Mechanical Properties of Composites Based on Polylactide and Poly-3-Hydroxybutyrate with Rubbers. Russian Journal of Physical Chemistry B, 2022, 16, 162-166.	0.2	2
34	Promising agrofibers based on biodegradable polymers. MATEC Web of Conferences, 2019, 298, 00080.	0.1	1
35	Kinetics of thermo-oxidative degradation of polymer blends based on polylactide. AIP Conference Proceedings, 2019, , .	0.3	1
36	Agricultural materials based on eco-friendly polymers. IOP Conference Series: Materials Science and Engineering, 2020, 971, 032022.	0.3	1

YULIA TERTYSHNAYA

#	Article	IF	CITATIONS
37	Impact of environmental agents on non-woven polylactide/natural rubber agrofiber. E3S Web of Conferences, 2021, 285, 07034.	0.2	1
38	Damage of polymer blends polylactide-polyethylene under the effect of ultraviolet irradiation. AIP Conference Proceedings, 2020, , .	0.3	1
39	Thermal and Thermooxidative Degradation of Blends Based on Polylactide and Polyethylene. Russian Metallurgy (Metally), 2020, 2020, 1182-1185.	0.1	1
40	Effect of Ozone on the Structure and Dynamics of Polylactide-Polyethylene Blends. Russian Journal of Physical Chemistry B, 2021, 15, 854-860.	0.2	1
41	Photodegradation of films based on polylactide-polyethylene blends. AIP Conference Proceedings, 2018, , .	0.3	Ο
42	Eco-friendly polymer materials for agricultural purposes. MATEC Web of Conferences, 2019, 298, 00130.	0.1	0
43	Nonwoven polylactide fibers: properties and application. IOP Conference Series: Materials Science and Engineering, 2020, 971, 052052.	0.3	Ο
44	Impact of environmental factors on agrofibers based on "green―polymers. IOP Conference Series: Materials Science and Engineering, 2020, 921, 012026.	0.3	0
45	Hydrolytic degradation of polymer blends based n polylactide and low density polyethylene. AIP Conference Proceedings, 2020, , .	0.3	Ο
46	Influence of Biodegradable Component Nature on Biodegradation of Composites Based on Polyethylene. Key Engineering Materials, 0, 910, 623-629.	0.4	0