Jean-Christophe Jacquier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1862176/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Current Status of Utilization and Potential of Dovyalis caffra Fruit: Major Focus on Kenya - A review. Scientific African, 2022, , e01097.	1.5	1
2	Enriching antimicrobial peptides from milk hydrolysates using pectin/alginate food-gels. Food Chemistry, 2021, 352, 129220.	8.2	18
3	Monitoring the effect of different microwave extraction parameters on the recovery of polyphenols from shiitake mushrooms: Comparison with hot-water and organic-solvent extractions. Biotechnology Reports (Amsterdam, Netherlands), 2020, 27, e00504.	4.4	23
4	Recovery of ergosterol and vitamin D2 from mushroom waste - Potential valorization by food and pharmaceutical industries. Trends in Food Science and Technology, 2020, 99, 351-366.	15.1	72
5	Understanding and Controlling Food Protein Structure and Function in Foods: Perspectives from Experiments and Computer Simulations. Annual Review of Food Science and Technology, 2020, 11, 365-387.	9.9	33
6	Development of a first order derivative spectrophotometry method to rapidly quantify protein in the presence of chitosan and its application in protein encapsulation systems. Food Chemistry, 2019, 289, 1-6.	8.2	7
7	Using rejection thresholds to determine acceptability of novel bioactive compounds added to milk-based beverages. Food Quality and Preference, 2019, 73, 276-283.	4.6	6
8	Peptidomic screening of bitter and nonbitter casein hydrolysate fractions for insulinogenic peptides. Journal of Dairy Science, 2018, 101, 2826-2837.	3.4	24
9	Casein Hydrolysate with Glycemic Control Properties: Evidence from Cells, Animal Models, and Humans. Journal of Agricultural and Food Chemistry, 2018, 66, 4352-4363.	5.2	28
10	<i>In vitro</i> evaluation of chitosan copper chelate gels as a multimicronutrient feed additive for cattle. Journal of the Science of Food and Agriculture, 2018, 98, 4177-4183.	3.5	15
11	Entrapment of proteins and peptides in chitosan-polyphosphoric acid hydrogel beads: A new approach to achieve both high entrapment efficiency and controlled in vitro release. Food Chemistry, 2018, 239, 1200-1209.	8.2	53
12	Cover Image, Volume 98, Issue 11. Journal of the Science of Food and Agriculture, 2018, 98, i-i.	3.5	0
13	Incorporation of bioactive dairy hydrolysate influences the stability and digestion behaviour of milk protein stabilised emulsions. Food and Function, 2018, 9, 5813-5823.	4.6	7
14	Preparation of novel chitosan iron microgel beads for fortification applications. Food Hydrocolloids, 2018, 84, 608-615.	10.7	13
15	Impact of Residual Lactose on Dry Heat-Induced Pre-texturization of Whey Proteins. Food and Bioprocess Technology, 2018, 11, 1985-1994.	4.7	5
16	Entrapment of protein in chitosan-tripolyphosphate beads and its release in an in vitro digestive model. Food Chemistry, 2017, 229, 495-501.	8.2	34
17	Validation of a paperâ€disk approach to facilitate the sensory evaluation of bitterness in dairy protein hydrolysates from a newly developed foodâ€grade fractionation system. Journal of Sensory Studies, 2017, 32, e12266.	1.6	3
18	The effect of modifying the distribution of sucralose and quinine on bitterness suppression in model gels. Food Quality and Preference, 2016, 50, 157-162.	4.6	0

#	Article	IF	CITATIONS
19	Kinetics of immobilisation and release of tryptophan, riboflavin and peptides from whey protein microbeads. Food Chemistry, 2015, 180, 150-155.	8.2	14
20	Masking of bitterness in dairy protein hydrolysates: Comparison of an electronic tongue and a trained sensory panel as means of directing the masking strategy. LWT - Food Science and Technology, 2015, 63, 751-757.	5.2	26
21	The effect of inhomogeneous quinine and hydrocolloid distributions on the bitterness of model gels. Food Quality and Preference, 2015, 45, 132-139.	4.6	7
22	In vitro and in vivo evaluation of whey protein hydrogels for oral delivery of riboflavin. Journal of Functional Foods, 2015, 19, 512-521.	3.4	28
23	Development of a Sensory Lexicon for Dairy Protein Hydrolysates. Journal of Sensory Studies, 2014, 29, 413-424.	1.6	11
24	Cold-set whey protein microgels containing immobilised lipid phases to modulate matrix digestion and release of a water-soluble bioactive. Journal of Microencapsulation, 2014, 31, 184-192.	2.8	12
25	Whey microbeads as a matrix for the encapsulation and immobilisation of riboflavin and peptides. Food Chemistry, 2014, 160, 46-52.	8.2	39
26	Correlation of sensory bitterness in dairy protein hydrolysates: Comparison of prediction models built using sensory, chromatographic and electronic tongue data. Talanta, 2014, 126, 46-53.	5.5	43
27	Comparison of a trained sensory panel and an electronic tongue in the assessment of bitter dairy protein hydrolysates. Journal of Food Engineering, 2014, 128, 127-131.	5.2	32
28	Cold-set whey protein microgels as pH modulated immobilisation matrices for charged bioactives. Food Chemistry, 2014, 156, 197-203.	8.2	30
29	Inhibition of Proinflammatory Biomarkers in THP1 Macrophages by Polyphenols Derived From Chamomile, Meadowsweet and Willow bark. Phytotherapy Research, 2013, 27, 588-594.	5.8	70
30	Effect of processing temperature on the stability of parthenolide in acidified feverfew infusions. Food Research International, 2013, 50, 593-596.	6.2	6
31	Stability of phytochemicals as sources of anti-inflammatory nutraceuticals in beverages — A review. Food Research International, 2013, 50, 480-486.	6.2	54
32	An In Vivo Study Examining the Antiinflammatory Effects of Chamomile, Meadowsweet, and Willow Bark in a Novel Functional Beverage. Journal of Dietary Supplements, 2013, 10, 370-380.	2.6	15
33	Cold-set whey protein microgels for the stable immobilization of lipids. Food Hydrocolloids, 2013, 31, 317-324.	10.7	34
34	Effects of addition of phenolic compounds on the acid gelation of milk. International Dairy Journal, 2011, 21, 185-191.	3.0	30
35	Oxidative stability of water/oil mixtures as influenced by the addition of free Cu2+ or Cu–alginate gel beads. Food Chemistry, 2011, 129, 253-258.	8.2	8
36	Feverfew as a source of bioactives for functional foods: Storage stability in model beverages. Journal of Functional Foods, 2011, 3, 38-43.	3.4	28

JEAN-CHRISTOPHE JACQUIER

#	Article	IF	CITATIONS
37	Effect of κ-carrageenan on rheological properties, microstructure, texture and oxidative stability of water-in-oil spreads. LWT - Food Science and Technology, 2010, 43, 843-848.	5.2	21
38	Responsiveness of \hat{I}^2 -carrageenan microgels to cationic surfactants and neutral salts. Carbohydrate Polymers, 2009, 78, 384-388.	10.2	10
39	Manufacture and characterisation of agarose microparticles. Journal of Food Engineering, 2009, 90, 141-145.	5.2	34
40	Optimisation of the extraction and processing conditions of chamomile (Matricaria chamomilla L.) for incorporation into a beverage. Food Chemistry, 2009, 115, 15-19.	8.2	56
41	Optimisation of the aqueous extraction conditions of phenols from meadowsweet (Filipendula) Tj ETQq1 1 0.784	314 rgBT	/Oyerlock 10
42	Effects of extraction temperature on the phenolic and parthenolide contents, and colour of aqueous feverfew (Tanacetum parthenium) extracts. Food Chemistry, 2009, 117, 226-231.	8.2	29
43	Manufacture of food grade κ-carrageenan microspheres. Journal of Food Engineering, 2009, 94, 316-320.	5.2	39
44	Cross-linked carrageenan beads for controlled release delivery systems. Carbohydrate Polymers, 2009, 78, 973-977.	10.2	58
45	Effect of drying methods on the phenolic constituents of meadowsweet (Filipendula ulmaria) and willow (Salix alba). LWT - Food Science and Technology, 2009, 42, 1468-1473.	5.2	99
46	Determination of the degradation kinetics of anthocyanins in a model juice system using isothermal and non-isothermal methods. Food Chemistry, 2008, 111, 204-208.	8.2	73
47	The use of dielectric properties and other physical analyses for assessing protein denaturation in beef biceps femoris muscle during cooking from 5 to 85ŰC. Meat Science, 2006, 72, 236-244.	5.5	78
48	Influence of granule size on the flow behaviour of heated rice starch dispersions in excess water. Carbohydrate Polymers, 2006, 66, 425-434.	10.2	17
49	Influence of Lipid Extraction Process on the Rheological Characteristics, Swelling Power, and Granule Size of Rice Starches in Excess Water. Journal of Agricultural and Food Chemistry, 2005, 53, 8259-8264.	5.2	19
50	Molecular Recognition of Polymers by Cyclodextrin Vesicles. Angewandte Chemie, 2003, 115, 2112-2116.	2.0	19
51	Molecular Recognition of Polymers by Cyclodextrin Vesicles. Angewandte Chemie - International Edition, 2003, 42, 2066-2070.	13.8	84
52	Physical characteristics of calcium induced κ- carrageenan networks. Carbohydrate Polymers, 2003, 53, 395-400.	10.2	100
53	Hostâ^'Guest Interaction between β-Cyclodextrin and Hydrophobically Modified Poly(isobutene-alt-maleic acid) Studied by Affinity Capillary Electrophoresis. Macromolecules, 2002, 35, 6412-6416.	4.8	25
54	Capillary electrophoretic study of the complex formation between DNA and cationic surfactants. Journal of Chromatography A, 1998, 817, 263-271.	3.7	23

#	Article	IF	CITATIONS
55	Complex formation between DNA and cationic surfactant. Physica A: Statistical Mechanics and Its Applications, 1998, 249, 216-225.	2.6	52
56	Determination of critical micelle concentration by capillary electrophoresis application to organo-saline electrolytes. Journal of Chromatography A, 1996, 743, 307-314.	3.7	51
57	Determination of critical micelle concentration by capillary electrophoresis. Theoretical approach and validation. Journal of Chromatography A, 1995, 718, 167-175.	3.7	61
58	Analytical study of biomass pyrolysis oils II. Optimization of analytical conditions for the phenolic fraction using micellar electrokinetic chromatography. Journal of Chromatography A, 1994, 669, 195-204.	3.7	7
59	Computer-assisted pH optimization for the separation of geometric isomers in capillary zone electrophoresis. Journal of Chromatography A, 1993, 652, 337-345.	3.7	19
60	Analysis of alkylaromatic sulphonates by high-performance capillary electrophoresis. Journal of Chromatography A, 1992, 608, 375-383.	3.7	58