
## Jean-Christophe Jacquier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1862176/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Physical characteristics of calcium induced Ϊ- carrageenan networks. Carbohydrate Polymers, 2003, 53, 395-400.                                                                                                             | 10.2 | 100       |
| 2  | Effect of drying methods on the phenolic constituents of meadowsweet (Filipendula ulmaria) and willow (Salix alba). LWT - Food Science and Technology, 2009, 42, 1468-1473.                                                | 5.2  | 99        |
| 3  | Molecular Recognition of Polymers by Cyclodextrin Vesicles. Angewandte Chemie - International<br>Edition, 2003, 42, 2066-2070.                                                                                             | 13.8 | 84        |
| 4  | The use of dielectric properties and other physical analyses for assessing protein denaturation in beef biceps femoris muscle during cooking from 5 to 85°C. Meat Science, 2006, 72, 236-244.                              | 5.5  | 78        |
| 5  | Determination of the degradation kinetics of anthocyanins in a model juice system using isothermal and non-isothermal methods. Food Chemistry, 2008, 111, 204-208.                                                         | 8.2  | 73        |
| 6  | Recovery of ergosterol and vitamin D2 from mushroom waste - Potential valorization by food and pharmaceutical industries. Trends in Food Science and Technology, 2020, 99, 351-366.                                        | 15.1 | 72        |
| 7  | Inhibition of Proinflammatory Biomarkers in THP1 Macrophages by Polyphenols Derived From<br>Chamomile, Meadowsweet and Willow bark. Phytotherapy Research, 2013, 27, 588-594.                                              | 5.8  | 70        |
| 8  | Determination of critical micelle concentration by capillary electrophoresis. Theoretical approach and validation. Journal of Chromatography A, 1995, 718, 167-175.                                                        | 3.7  | 61        |
| 9  | Analysis of alkylaromatic sulphonates by high-performance capillary electrophoresis. Journal of<br>Chromatography A, 1992, 608, 375-383.                                                                                   | 3.7  | 58        |
| 10 | Cross-linked carrageenan beads for controlled release delivery systems. Carbohydrate Polymers, 2009, 78, 973-977.                                                                                                          | 10.2 | 58        |
| 11 | Optimisation of the extraction and processing conditions of chamomile (Matricaria chamomilla L.) for incorporation into a beverage. Food Chemistry, 2009, 115, 15-19.                                                      | 8.2  | 56        |
| 12 | Stability of phytochemicals as sources of anti-inflammatory nutraceuticals in beverages — A review.<br>Food Research International, 2013, 50, 480-486.                                                                     | 6.2  | 54        |
| 13 | Entrapment of proteins and peptides in chitosan-polyphosphoric acid hydrogel beads: A new approach<br>to achieve both high entrapment efficiency and controlled in vitro release. Food Chemistry, 2018, 239,<br>1200-1209. | 8.2  | 53        |
| 14 | Complex formation between DNA and cationic surfactant. Physica A: Statistical Mechanics and Its Applications, 1998, 249, 216-225.                                                                                          | 2.6  | 52        |
| 15 | Determination of critical micelle concentration by capillary electrophoresis application to organo-saline electrolytes. Journal of Chromatography A, 1996, 743, 307-314.                                                   | 3.7  | 51        |
| 16 | Correlation of sensory bitterness in dairy protein hydrolysates: Comparison of prediction models built using sensory, chromatographic and electronic tongue data. Talanta, 2014, 126, 46-53.                               | 5.5  | 43        |
| 17 | Manufacture of food grade κ-carrageenan microspheres. Journal of Food Engineering, 2009, 94, 316-320.                                                                                                                      | 5.2  | 39        |
| 18 | Whey microbeads as a matrix for the encapsulation and immobilisation of riboflavin and peptides.                                                                                                                           | 8.2  | 39        |

| #  | Article                                                                                                                                                                                                                                                       | IF                | CITATIONS     |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------|
| 19 | Manufacture and characterisation of agarose microparticles. Journal of Food Engineering, 2009, 90, 141-145.                                                                                                                                                   | 5.2               | 34            |
| 20 | Cold-set whey protein microgels for the stable immobilization of lipids. Food Hydrocolloids, 2013, 31, 317-324.                                                                                                                                               | 10.7              | 34            |
| 21 | Entrapment of protein in chitosan-tripolyphosphate beads and its release in an in vitro digestive model. Food Chemistry, 2017, 229, 495-501.                                                                                                                  | 8.2               | 34            |
| 22 | Optimisation of the aqueous extraction conditions of phenols from meadowsweet (Filipendula) Tj ETQq0 0 0 rgB                                                                                                                                                  | T /Overloc<br>8.2 | k 10 Tf 50 62 |
| 23 | Understanding and Controlling Food Protein Structure and Function in Foods: Perspectives from<br>Experiments and Computer Simulations. Annual Review of Food Science and Technology, 2020, 11,<br>365-387.                                                    | 9.9               | 33            |
| 24 | Comparison of a trained sensory panel and an electronic tongue in the assessment of bitter dairy protein hydrolysates. Journal of Food Engineering, 2014, 128, 127-131.                                                                                       | 5.2               | 32            |
| 25 | Effects of addition of phenolic compounds on the acid gelation of milk. International Dairy Journal, 2011, 21, 185-191.                                                                                                                                       | 3.0               | 30            |
| 26 | Cold-set whey protein microgels as pH modulated immobilisation matrices for charged bioactives.<br>Food Chemistry, 2014, 156, 197-203.                                                                                                                        | 8.2               | 30            |
| 27 | Effects of extraction temperature on the phenolic and parthenolide contents, and colour of aqueous feverfew (Tanacetum parthenium) extracts. Food Chemistry, 2009, 117, 226-231.                                                                              | 8.2               | 29            |
| 28 | Feverfew as a source of bioactives for functional foods: Storage stability in model beverages. Journal of Functional Foods, 2011, 3, 38-43.                                                                                                                   | 3.4               | 28            |
| 29 | In vitro and in vivo evaluation of whey protein hydrogels for oral delivery of riboflavin. Journal of<br>Functional Foods, 2015, 19, 512-521.                                                                                                                 | 3.4               | 28            |
| 30 | Casein Hydrolysate with Glycemic Control Properties: Evidence from Cells, Animal Models, and<br>Humans. Journal of Agricultural and Food Chemistry, 2018, 66, 4352-4363.                                                                                      | 5.2               | 28            |
| 31 | Masking of bitterness in dairy protein hydrolysates: Comparison of an electronic tongue and a trained sensory panel as means of directing the masking strategy. LWT - Food Science and Technology, 2015, 63, 751-757.                                         | 5.2               | 26            |
| 32 | Hostâ~'Guest Interaction between β-Cyclodextrin and Hydrophobically Modified<br>Poly(isobutene-alt-maleic acid) Studied by Affinity Capillary Electrophoresis. Macromolecules, 2002,<br>35, 6412-6416.                                                        | 4.8               | 25            |
| 33 | Peptidomic screening of bitter and nonbitter casein hydrolysate fractions for insulinogenic peptides.<br>Journal of Dairy Science, 2018, 101, 2826-2837.                                                                                                      | 3.4               | 24            |
| 34 | Capillary electrophoretic study of the complex formation between DNA and cationic surfactants.<br>Journal of Chromatography A, 1998, 817, 263-271.                                                                                                            | 3.7               | 23            |
| 35 | Monitoring the effect of different microwave extraction parameters on the recovery of polyphenols<br>from shiitake mushrooms: Comparison with hot-water and organic-solvent extractions.<br>Biotechnology Reports (Amsterdam, Netherlands), 2020, 27, e00504. | 4.4               | 23            |
| 36 | Effect of Î⁰-carrageenan on rheological properties, microstructure, texture and oxidative stability of water-in-oil spreads. LWT - Food Science and Technology, 2010, 43, 843-848.                                                                            | 5.2               | 21            |

| #  | Article                                                                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Computer-assisted pH optimization for the separation of geometric isomers in capillary zone electrophoresis. Journal of Chromatography A, 1993, 652, 337-345.                                                       | 3.7  | 19        |
| 38 | Molecular Recognition of Polymers by Cyclodextrin Vesicles. Angewandte Chemie, 2003, 115, 2112-2116.                                                                                                                | 2.0  | 19        |
| 39 | Influence of Lipid Extraction Process on the Rheological Characteristics, Swelling Power, and<br>Granule Size of Rice Starches in Excess Water. Journal of Agricultural and Food Chemistry, 2005, 53,<br>8259-8264. | 5.2  | 19        |
| 40 | Enriching antimicrobial peptides from milk hydrolysates using pectin/alginate food-gels. Food<br>Chemistry, 2021, 352, 129220.                                                                                      | 8.2  | 18        |
| 41 | Influence of granule size on the flow behaviour of heated rice starch dispersions in excess water.<br>Carbohydrate Polymers, 2006, 66, 425-434.                                                                     | 10.2 | 17        |
| 42 | An In Vivo Study Examining the Antiinflammatory Effects of Chamomile, Meadowsweet, and Willow<br>Bark in a Novel Functional Beverage. Journal of Dietary Supplements, 2013, 10, 370-380.                            | 2.6  | 15        |
| 43 | <i>In vitro</i> evaluation of chitosan copper chelate gels as a multimicronutrient feed additive for cattle. Journal of the Science of Food and Agriculture, 2018, 98, 4177-4183.                                   | 3.5  | 15        |
| 44 | Kinetics of immobilisation and release of tryptophan, riboflavin and peptides from whey protein microbeads. Food Chemistry, 2015, 180, 150-155.                                                                     | 8.2  | 14        |
| 45 | Preparation of novel chitosan iron microgel beads for fortification applications. Food<br>Hydrocolloids, 2018, 84, 608-615.                                                                                         | 10.7 | 13        |
| 46 | Cold-set whey protein microgels containing immobilised lipid phases to modulate matrix digestion and release of a water-soluble bioactive. Journal of Microencapsulation, 2014, 31, 184-192.                        | 2.8  | 12        |
| 47 | Development of a Sensory Lexicon for Dairy Protein Hydrolysates. Journal of Sensory Studies, 2014, 29, 413-424.                                                                                                     | 1.6  | 11        |
| 48 | Responsiveness of κ-carrageenan microgels to cationic surfactants and neutral salts. Carbohydrate<br>Polymers, 2009, 78, 384-388.                                                                                   | 10.2 | 10        |
| 49 | Oxidative stability of water/oil mixtures as influenced by the addition of free Cu2+ or Cu–alginate gel<br>beads. Food Chemistry, 2011, 129, 253-258.                                                               | 8.2  | 8         |
| 50 | Analytical study of biomass pyrolysis oils II. Optimization of analytical conditions for the phenolic<br>fraction using micellar electrokinetic chromatography. Journal of Chromatography A, 1994, 669,<br>195-204. | 3.7  | 7         |
| 51 | The effect of inhomogeneous quinine and hydrocolloid distributions on the bitterness of model gels.<br>Food Quality and Preference, 2015, 45, 132-139.                                                              | 4.6  | 7         |
| 52 | Incorporation of bioactive dairy hydrolysate influences the stability and digestion behaviour of milk protein stabilised emulsions. Food and Function, 2018, 9, 5813-5823.                                          | 4.6  | 7         |
| 53 | Development of a first order derivative spectrophotometry method to rapidly quantify protein in the presence of chitosan and its application in protein encapsulation systems. Food Chemistry, 2019, 289, 1-6.      | 8.2  | 7         |
| 54 | Effect of processing temperature on the stability of parthenolide in acidified feverfew infusions.<br>Food Research International, 2013, 50, 593-596.                                                               | 6.2  | 6         |

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Using rejection thresholds to determine acceptability of novel bioactive compounds added to milk-based beverages. Food Quality and Preference, 2019, 73, 276-283.                                                                  | 4.6 | 6         |
| 56 | Impact of Residual Lactose on Dry Heat-Induced Pre-texturization of Whey Proteins. Food and Bioprocess Technology, 2018, 11, 1985-1994.                                                                                            | 4.7 | 5         |
| 57 | Validation of a paperâ€disk approach to facilitate the sensory evaluation of bitterness in dairy protein<br>hydrolysates from a newly developed foodâ€grade fractionation system. Journal of Sensory Studies,<br>2017, 32, e12266. | 1.6 | 3         |
| 58 | Current Status of Utilization and Potential of Dovyalis caffra Fruit: Major Focus on Kenya - A review.<br>Scientific African, 2022, , e01097.                                                                                      | 1.5 | 1         |
| 59 | The effect of modifying the distribution of sucralose and quinine on bitterness suppression in model gels. Food Quality and Preference, 2016, 50, 157-162.                                                                         | 4.6 | 0         |
| 60 | Cover Image, Volume 98, Issue 11. Journal of the Science of Food and Agriculture, 2018, 98, i-i.                                                                                                                                   | 3.5 | 0         |