David Nieto Simavilla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/186205/publications.pdf

Version: 2024-02-01

14 232 7 14 papers citations h-index g-index

14 14 293
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Mechanisms of Polymer Adsorption onto Solid Substrates. ACS Macro Letters, 2017, 6, 975-979.	2.3	54
2	Taming the Strength of Interfacial Interactions via Nanoconfinement. ACS Central Science, 2018, 4, 755-759.	5.3	50
3	Tears of wine: new insights on an old phenomenon. Scientific Reports, 2015, 5, 16162.	1.6	48
4	Anisotropic thermal transport in a crosslinked polyisoprene rubber subjected to uniaxial elongation. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 1638-1644.	2.4	14
5	Characterization of Adsorbed Polymer Layers: Preparation, Determination of the Adsorbed Amount and Investigation of the Kinetics of Irreversible Adsorption. Macromolecular Chemistry and Physics, 2018, 219, 1700303.	1.1	14
6	Density of Obstacles Affects Diffusion in Adsorbed Polymer Layers. ACS Macro Letters, 2020, 9, 318-322.	2.3	13
7	Thermal conductivity of amorphous polymers and its dependence on molecular weight. Polymer, 2021, 228, 123881.	1.8	10
8	Evidence of Deformation-Dependent Heat Capacity and Energetic Elasticity in a Cross-Linked Elastomer Subjected to Uniaxial Elongation. Macromolecules, 2018, 51, 589-597.	2.2	6
9	Investigation of Anisotropic Thermal Conductivity in Polymers Using Infrared Thermography. Journal of Heat Transfer, 2014, 136, .	1.2	5
10	Molecular Dynamics Test of the Stress-Thermal Rule in Polyethylene and Polystyrene Entangled Melts. Macromolecules, 2020, 53, 789-802.	2.2	5
11	THERMAL TRANSPORT IN CROSS-LINKED ELASTOMERS SUBJECTED TO ELONGATIONAL DEFORMATIONS. Rubber Chemistry and Technology, 2019, 92, 639-652.	0.6	5
12	Mesoscopic simulations of inertial drag enhancement and polymer migration in viscoelastic solutions flowing around a confined array of cylinders. Journal of Non-Newtonian Fluid Mechanics, 2022, 305, 104811.	1.0	4
13	1D-Confinement Inhibits the Anomaly in Secondary Relaxation of a Fluorinated Polymer. ACS Macro Letters, 2021, 10, 649-653.	2.3	3
14	A combination of the eXtended Pom-Pom model and the stress-thermal rule to predict anisotropy in thermal conductivity in non-linear polymeric flows. AIP Conference Proceedings, 2019, , .	0.3	1