Markus Kalberer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1861792/publications.pdf

Version: 2024-02-01

172457 175258 2,987 55 29 52 citations h-index g-index papers 79 79 79 3468 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Molecular Identification of Organic Compounds in the Atmosphere: State of the Art and Challenges. Chemical Reviews, 2015, 115, 3919-3983.	47.7	417
2	Elemental Composition of HULIS in the Pearl River Delta Region, China: Results Inferred from Positive and Negative Electrospray High Resolution Mass Spectrometric Data. Environmental Science & Emp; Technology, 2012, 46, 7454-7462.	10.0	218
3	Secondary Organic Aerosol Formation by Irradiation of 1,3,5-Trimethylbenzeneâ^'NOxâ^'H2O in a New Reaction Chamber for Atmospheric Chemistry and Physics. Environmental Science & Dechnology, 2005, 39, 2668-2678.	10.0	191
4	Ultrahigh Mass Resolution and Accurate Mass Measurements as a Tool To Characterize Oligomers in Secondary Organic Aerosols. Analytical Chemistry, 2007, 79, 4074-4082.	6.5	168
5	Organosulfates in Humic-like Substance Fraction Isolated from Aerosols at Seven Locations in East Asia: A Study by Ultra-High-Resolution Mass Spectrometry. Environmental Science & Echnology, 2012, 46, 13118-13127.	10.0	166
6	Compilation and evaluation of gas phase diffusion coefficients of reactive trace gases in the atmosphere: volume 1. Inorganic compounds. Atmospheric Chemistry and Physics, 2014, 14, 9233-9247.	4.9	115
7	Introduction to the special issue "In-depth study of air pollution sources and processes within Beijing and its surrounding region (APHH-Beijing)― Atmospheric Chemistry and Physics, 2019, 19, 7519-7546.	4.9	95
8	An extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF) for online measurement of atmospheric aerosol particles. Atmospheric Measurement Techniques, 2019, 12, 4867-4886.	3.1	91
9	Molecular Composition of Boreal Forest Aerosol from HyytiĀÞFinland, Using Ultrahigh Resolution Mass Spectrometry. Environmental Science & Technology, 2013, 47, 4069-4079.	10.0	85
10	Enhanced Volatile Organic Compounds emissions and organic aerosol mass increase the oligomer content of atmospheric aerosols. Scientific Reports, 2016, 6, 35038.	3.3	80
11	Compilation and evaluation of gas phase diffusion coefficients of reactive trace gases in the atmosphere: Volume 2. Diffusivities of organic compounds, pressure-normalised mean free paths, and average Knudsen numbers for gas uptake calculations. Atmospheric Chemistry and Physics, 2015, 15, 5585-5598.	4.9	78
12	Molecular composition of organic aerosols in central Amazonia: an ultra-high-resolution mass spectrometry study. Atmospheric Chemistry and Physics, 2016, 16, 11899-11913.	4.9	73
13	Toxicity of aged gasoline exhaust particles to normal and diseased airway epithelia. Scientific Reports, 2015, 5, 11801.	3. 3	71
14	Fluorescent lifetime imaging of atmospheric aerosols: a direct probe of aerosol viscosity. Faraday Discussions, 2013, 165, 343.	3.2	69
15	Atmospheric Analytical Chemistry. Analytical Chemistry, 2011, 83, 4649-4664.	6.5	62
16	Characterizing an Extractive Electrospray Ionization (EESI) Source for the Online Mass Spectrometry Analysis of Organic Aerosols. Environmental Science & Environmental Science & 2013, 47, 7324-7331.	10.0	58
17	Observations of sesquiterpenes and their oxidation products in central Amazonia during the wet and dry seasons. Atmospheric Chemistry and Physics, 2018, 18, 10433-10457.	4.9	53
18	Molecular composition of organic aerosols at urban background and road tunnel sites using ultra-high resolution mass spectrometry. Faraday Discussions, 2016, 189, 51-68.	3.2	50

#	Article	IF	Citations
19	Radical Formation by Fine Particulate Matter Associated with Highly Oxygenated Molecules. Environmental Science & Environmenta	10.0	45
20	Effect of Atmospheric Aging on Soot Particle Toxicity in Lung Cell Models at the Air–Liquid Interface: Differential Toxicological Impacts of Biogenic and Anthropogenic Secondary Organic Aerosols (SOAs). Environmental Health Perspectives, 2022, 130, 27003.	6.0	44
21	An automated online instrument to quantify aerosol-bound reactive oxygen species (ROS) for ambient measurement and health-relevant aerosol studies. Atmospheric Measurement Techniques, 2016, 9, 4891-4900.	3.1	43
22	A light-driven burst of hydroxyl radicals dominates oxidation chemistry in newly activated cloud droplets. Science Advances, 2019, 5, eaav7689.	10.3	41
23	Responses of lung cells to realistic exposure of primary and aged carbonaceous aerosols. Atmospheric Environment, 2013, 68, 143-150.	4.1	40
24	Impact of anthropogenic and biogenic sources on the seasonal variation in the molecular composition of urban organic aerosols: a field and laboratory study using ultra-high-resolution mass spectrometry. Atmospheric Chemistry and Physics, 2019, 19, 5973-5991.	4.9	40
25	Seasonal differences of urban organic aerosol composition – an ultra-high resolution mass spectrometry study. Environmental Chemistry, 2012, 9, 298.	1.5	39
26	Atmospheric conditions and composition that influence PM _{2.5} oxidative potential in Beijing, China. Atmospheric Chemistry and Physics, 2021, 21, 5549-5573.	4.9	38
27	Dynamic viscosity mapping of the oxidation of squalene aerosol particles. Physical Chemistry Chemical Physics, 2016, 18, 30385-30393.	2.8	37
28	Multiphase composition changes and reactive oxygen species formation during limonene oxidation in the new Cambridge Atmospheric Simulation Chamber (CASC). Atmospheric Chemistry and Physics, 2017, 17, 9853-9868.	4.9	34
29	The effect of humidity on the ozonolysis of unsaturated compounds in aerosol particles. Physical Chemistry Chemical Physics, 2012, 14, 8023.	2.8	31
30	Are reactive oxygen species (ROS) a suitable metric to predict toxicity of carbonaceous aerosol particles?. Atmospheric Chemistry and Physics, 2022, 22, 1793-1809.	4.9	30
31	Online Quantification of Criegee Intermediates of α-Pinene Ozonolysis by Stabilization with Spin Traps and Proton-Transfer Reaction Mass Spectrometry Detection. Journal of the American Chemical Society, 2017, 139, 3999-4008.	13.7	29
32	A new processing scheme for ultra-high resolution direct infusion mass spectrometry data. Atmospheric Environment, 2018, 178, 129-139.	4.1	26
33	Formation of metal-organic ligand complexes affects solubility of metals in airborne particles at an urban site in the Po valley. Chemosphere, 2020, 241, 125025.	8.2	26
34	Quantification of Particle-Bound Organic Radicals in Secondary Organic Aerosol. Environmental Science & Environmental Science	10.0	25
35	Observations of sesquiterpenes and their oxidation products in central Amazonia during the wet and dry seasons. Atmospheric Chemistry and Physics, 2018, 18, 10433-10457.	4.9	22
36	Mass Spectrometry Characterization of Peroxycarboxylic Acids as Proxies for Reactive Oxygen Species and Highly Oxygenated Molecules in Atmospheric Aerosols. Analytical Chemistry, 2017, 89, 2873-2879.	6. 5	19

#	Article	IF	CITATIONS
37	Development of a Physiologically Relevant Online Chemical Assay To Quantify Aerosol Oxidative Potential. Analytical Chemistry, 2019, 91, 13088-13095.	6.5	19
38	Direct target and non-target analysis of urban aerosol sample extracts using atmospheric pressure photoionisation high-resolution mass spectrometry. Chemosphere, 2019, 224, 786-795.	8.2	18
39	Exposure to naphthalene and \hat{l}^2 -pinene-derived secondary organic aerosol induced divergent changes in transcript levels of BEAS-2B cells. Environment International, 2022, 166, 107366.	10.0	18
40	Direct Surface Analysis Coupled to High-Resolution Mass Spectrometry Reveals Heterogeneous Composition of the Cuticle of <i>Hibiscus trionum</i> Petals. Analytical Chemistry, 2015, 87, 9900-9907.	6.5	17
41	Heterogeneous reaction of ClONO ₂ with TiO ₂ and SiO ₂ aerosol particles: implications for stratospheric particle injection for climate engineering. Atmospheric Chemistry and Physics, 2016, 16, 15397-15412.	4.9	16
42	Factors Affecting the Ambient Physicochemical Properties of Cerium-Containing Particles Generated by Nanoparticle Diesel Fuel Additive Use. Aerosol Science and Technology, 2015, 49, 371-380.	3.1	15
43	Online molecular characterisation of organic aerosols in an atmospheric chamber using extractive electrospray ionisation mass spectrometry. Atmospheric Chemistry and Physics, 2017, 17, 14485-14500.	4.9	15
44	Synthesis and characterisation of peroxypinic acids as proxies for highly oxygenated molecules (HOMs) in secondary organic aerosol. Atmospheric Chemistry and Physics, 2018, 18, 10973-10983.	4.9	15
45	Differences in the composition of organic aerosols between winter and summer in Beijing: a study by direct-infusion ultrahigh-resolution mass spectrometry. Atmospheric Chemistry and Physics, 2020, 20, 13303-13318.	4.9	15
46	Cloud Processing of Secondary Organic Aerosol from Isoprene and Methacrolein Photooxidation. Journal of Physical Chemistry A, 2017, 121, 7641-7654.	2.5	14
47	1064 nm Dispersive Raman Microspectroscopy and Optical Trapping of Pharmaceutical Aerosols. Analytical Chemistry, 2018, 90, 8838-8844.	6.5	14
48	Particulate mass sensing with piezoelectric bulk acoustic mode resonators. , 2016, , .		11
49	Measuring Aerosol Phase Changes and Hygroscopicity with a Microresonator Mass Sensor. Analytical Chemistry, 2018, 90, 9716-9724.	6.5	8
50	Ultra-fine Particulate Detection using Mode-localized MEMS Resonators., 2019,,.		7
51	Direct Injection Liquid Chromatography High-Resolution Mass Spectrometry for Determination of Primary and Secondary Terrestrial and Marine Biomarkers in Ice Cores. Analytical Chemistry, 2019, 91, 5051-5057.	6.5	6
52	Direct Depolymerization Coupled to Liquid Extraction Surface Analysis-High-Resolution Mass Spectrometry for the Characterization of the Surface of Plant Tissues. Analytical Chemistry, 2019, 91, 8326-8333.	6.5	5
53	A new method for the determination of primary and secondary terrestrial and marine biomarkers in ice cores using liquid chromatography high-resolution mass spectrometry. Talanta, 2019, 194, 233-242.	5.5	5
54	Compositional Analysis of Adsorbed Organic Aerosol on a Microresonator Mass Sensor. Aerosol Science and Engineering, 2018, 2, 118-129.	1.9	3

ARTICLE IF CITATIONS

55 Extending the Lifetime of Resonant Atmospheric Particulate Mass Sensors With Solvent Rinses., 2017, 2