Paige Lacy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1861770/publications.pdf

Version: 2024-02-01

117571 88593 5,210 112 34 70 citations h-index g-index papers 114 114 114 7041 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Eosinophils: Biological Properties and Role in Health and Disease. Clinical and Experimental Allergy, 2008, 38, 709-750.	1.4	702
2	Effects of Fluticasone on Systemic Markers of Inflammation in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2004, 170, 760-765.	2.5	329
3	Mechanisms of Degranulation in Neutrophils. Allergy, Asthma and Clinical Immunology, 2006, 2, 98-108.	0.9	319
4	Cytokine release from innate immune cells: association with diverse membrane trafficking pathways. Blood, 2011, 118, 9-18.	0.6	296
5	Eosinophil Cytokines, Chemokines, and Growth Factors: Emerging Roles in Immunity. Frontiers in Immunology, 2014, 5, 570.	2.2	250
6	Human versus mouse eosinophils: "That which we call an eosinophil, by any other name would stain as red― Journal of Allergy and Clinical Immunology, 2012, 130, 572-584.	1.5	165
7	Pathways for Cytokine Secretion. Physiology, 2010, 25, 218-229.	1.6	161
8	Granule Protein Processing and Regulated Secretion in Neutrophils. Frontiers in Immunology, 2014, 5, 448.	2.2	155
9	Rac2 is critical for neutrophil primary granule exocytosis. Blood, 2004, 104, 832-839.	0.6	148
10	Rapid Mobilization of Intracellularly Stored RANTES in Response to Interferon-Î ³ in Human Eosinophils. Blood, 1999, 94, 23-32.	0.6	130
11	Anaplasma phagocytophilum Utilizes Multiple Host Evasion Mechanisms To Thwart NADPH Oxidase-Mediated Killing during Neutrophil Infection. Infection and Immunity, 2004, 72, 4772-4783.	1.0	120
12	<i>Streptococcus pneumoniae</i> and <i>Staphylococcus aureus</i> Pneumonia Induce Distinct Metabolic Responses. Journal of Proteome Research, 2009, 8, 3029-3036.	1.8	95
13	Metabolomics and Its Application to Acute Lung Diseases. Frontiers in Immunology, 2016, 7, 44.	2.2	94
14	Sputum autoantibodies in patients with severe eosinophilic asthma. Journal of Allergy and Clinical Immunology, 2018, 141, 1269-1279.	1.5	93
15	Eosinophil Extracellular Traps and Inflammatory Pathologiesâ€"Untangling the Web!. Frontiers in Immunology, 2018, 9, 2763.	2.2	90
16	A critical role for vesicle-associated membrane protein-7 in exocytosis from human eosinophils and neutrophils. Allergy: European Journal of Allergy and Clinical Immunology, 2006, 61, 777-784.	2.7	89
17	Primary granule exocytosis in human neutrophils is regulated by Rac-dependent actin remodeling. American Journal of Physiology - Cell Physiology, 2008, 295, C1354-C1365.	2.1	87
18	Homologous recombination into the eosinophil peroxidase locus generates a strain of mice expressing <i>Cre</i> recombinase exclusively in eosinophils. Journal of Leukocyte Biology, 2013, 94, 17-24.	1.5	85

#	Article	IF	CITATIONS
19	Divergence of Mechanisms Regulating Respiratory Burst in Blood and Sputum Eosinophils and Neutrophils from Atopic Subjects. Journal of Immunology, 2003, 170, 2670-2679.	0.4	84
20	Intracellular Localization of Interleukin-6 in Eosinophils From Atopic Asthmatics and Effects of Interferon \hat{I}^3 . Blood, 1998, 91, 2508-2516.	0.6	80
21	The influence of infections on the development and severity of allergic disorders. Current Opinion in Immunology, 2000, 12, 632-640.	2.4	80
22	Mouse and Human Eosinophils Degranulate in Response to Platelet-Activating Factor (PAF) and LysoPAF via a PAF-Receptor–Independent Mechanism: Evidence for a Novel Receptor. Journal of Immunology, 2010, 184, 6327-6334.	0.4	75
23	Control of granule exocytosis in neutrophils. Frontiers in Bioscience - Landmark, 2008, Volume, 5559.	3.0	65
24	Human eosinophils express and release IL-13 following CD28-dependent activation. Journal of Leukocyte Biology, 2002, 72, 769-79.	1.5	63
25	Fusion protein vesicle-associated membrane protein 2 is implicated in IFN-γ–induced piecemeal degranulation in human eosinophils from atopic individuals. Journal of Allergy and Clinical Immunology, 2001, 107, 671-678.	1.5	62
26	Expression of eosinophil target SNAREs as potential cognate receptors for vesicle-associated membrane protein-2 in exocytosis. Journal of Allergy and Clinical Immunology, 2002, 109, 299-306.	1.5	56
27	Eosinophil activities modulate the immune/inflammatory character of allergic respiratory responses in mice. Allergy: European Journal of Allergy and Clinical Immunology, 2014, 69, 315-327.	2.7	53
28	The induction of eosinophil peroxidase release: improved methods of measurement and stimulation. Journal of Immunological Methods, 2004, 291, 101-108.	0.6	43
29	Sputum Antineutrophil Cytoplasmic Antibodies in Serum Antineutrophil Cytoplasmic Antibody–Negative Eosinophilic Granulomatosis with Polyangiitis. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 158-170.	2.5	43
30	Vesicle-associated membrane protein 7 (VAMP-7) is essential for target cell killing in a natural killer cell line. Biochemical and Biophysical Research Communications, 2008, 366, 617-623.	1.0	40
31	A sensitive high throughput ELISA for human eosinophil peroxidase: A specific assay to quantify eosinophil degranulation from patient-derived sources. Journal of Immunological Methods, 2012, 384, 10-20.	0.6	38
32	Signal Intensities Derived from Different NMR Probes and Parameters Contribute to Variations in Quantification of Metabolites. PLoS ONE, 2014, 9, e85732.	1.1	38
33	Immune effector functions of eosinophils in allergic airway inflammation. Current Opinion in Allergy and Clinical Immunology, 2001, 1, 79-84.	1.1	37
34	The role of Rho GTPases and SNAREs in mediator release from granulocytes., 2005, 107, 358-376.		36
35	NMR analysis of neutrophil activation in sputum samples from patients with cystic fibrosis. Magnetic Resonance in Medicine, 2004, 52, 807-814.	1.9	34
36	The development of a sensitive and specific ELISA for mouse eosinophil peroxidase: Assessment of eosinophil degranulation ex vivo and in models of human disease. Journal of Immunological Methods, 2012, 375, 138-147.	0.6	34

#	Article	IF	Citations
37	Editorial: Secretion of Cytokines and Chemokines by Innate Immune Cells. Frontiers in Immunology, 2015, 6, 190.	2.2	33
38	Exocytotic events in eosinophils and mast cells. Clinical and Experimental Allergy, 1999, 29, 1017-1022.	1.4	32
39	Immune effector functions of eosinophils in allergic airway inflammation. Current Opinion in Allergy and Clinical Immunology, 2001, 1, 79-84.	1.1	32
40	Regulation of inflammation by Rac2 in immune complex-mediated acute lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 297, L1091-L1102.	1.3	32
41	Metabolomics of sepsis-induced acute lung injury: a new approach for biomarkers. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2011, 300, L1-L3.	1.3	31
42	Mast Cell Tryptase Activates Peripheral Blood Eosinophils to Release Granule-Associated Enzymes. International Archives of Allergy and Immunology, 2004, 135, 196-204.	0.9	29
43	Improved recovery of functionally active eosinophils and neutrophils using novel immunomagnetic technology. Journal of Immunological Methods, 2017, 449, 44-55.	0.6	29
44	Rac2 is involved in bleomycin-induced lung inflammation leading to pulmonary fibrosis. Respiratory Research, 2014, 15, 71.	1.4	28
45	Biologics in Asthma: A Molecular Perspective to Precision Medicine. Frontiers in Pharmacology, 2021, 12, 793409.	1.6	28
46	Inhibition of nonspecific binding of fluorescent-labelled antibodies to human eosinophils. Journal of Immunological Methods, 1998, 217, 113-119.	0.6	27
47	Expression and translocation of Rac2 in eosinophils during superoxide generation. Immunology, 1999, 98, 244-252.	2.0	26
48	Neutrophil primary granule release and maximal superoxide generation depend on Rac2 in a common signalling pathway. Canadian Journal of Physiology and Pharmacology, 2005, 83, 69-75.	0.7	25
49	Immunofluorescence analysis of cytokine and granule protein expression during eosinophil maturation from cord blood–derived CD34+ progenitors. Journal of Allergy and Clinical Immunology, 2000, 105, 1178-1184.	1.5	23
50	Eosinophil function in allergic inflammation: From bone marrow to tissue response. Current Allergy and Asthma Reports, 2004, 4, 149-158.	2.4	23
51	An essential role for Rab27a GTPase in eosinophil exocytosis. Journal of Leukocyte Biology, 2013, 94, 1265-1274.	1.5	23
52	New concepts in effector functions of eosinophil cytokines. Clinical and Experimental Allergy, 2000, 30, 1667-1671.	1.4	22
53	Agonist Activation of F-Actin-Mediated Eosinophil Shape Change and Mediator Release Is Dependent on Rac2. International Archives of Allergy and Immunology, 2011, 156, 137-147.	0.9	22
54	Neutrophils promote T-cell activation through the regulated release of CD44-bound Galectin-9 from the cell surface during HIV infection. PLoS Biology, 2021, 19, e3001387.	2.6	20

#	Article	IF	CITATIONS
55	Rac1 and Rac2 control distinct events during antigen-stimulated mast cell exocytosis. Journal of Leukocyte Biology, 2014, 95, 763-774.	1.5	19
56	Vesicle-associated membrane protein 7-mediated eosinophil degranulation promotes allergic airway inflammation in mice. Communications Biology, 2018, 1, 83.	2.0	18
57	Interleukin-4 and RANTES expression in maturing eosinophils derived from human cord blood CD34+ progenitors. Immunology, 2000, 101, 419-425.	2.0	17
58	Mechanisms of eosinophil recruitment and activation. Current Allergy and Asthma Reports, 2002, 2, 107-116.	2.4	17
59	The Rho GTPase Rac1 is required for recycling endosomeâ€mediated secretion of TNF in macrophages. Immunology and Cell Biology, 2014, 92, 275-286.	1.0	17
60	Interleukinâ€5 drives glycolysis and reactive oxygen speciesâ€dependent citric acid cycling by eosinophils. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 1361-1370.	2.7	17
61	Eosinophil Overview: Structure, Biological Properties, and Key Functions. Methods in Molecular Biology, 2014, 1178, 1-12.	0.4	17
62	Replenishment of RANTES mRNA expression in activated eosinophils fromatopic asthmatics. Immunology, 2000, 99, 591-599.	2.0	17
63	Identification of Human Eosinophils in Whole Blood by Flow Cytometry. Methods in Molecular Biology, 2014, 1178, 81-92.	0.4	15
64	Eosinophil Cytokines in Allergy. , 2017, , 173-218.		14
65	Sputum analysis in diagnosis and management of obstructive airway diseases. Therapeutics and Clinical Risk Management, 2005, 1 , $169-79$.	0.9	14
66	Cyclinâ€dependent kinase 5 regulates degranulation in human eosinophils. Immunology, 2015, 144, 641-648.	2.0	13
67	Non-Malignant Respiratory Illnesses in Association with Occupational Exposure to Asbestos and Other Insulating Materials: Findings from the Alberta Insulator Cohort. International Journal of Environmental Research and Public Health, 2020, 17, 7085.	1.2	13
68	Proteomic analysis of secretagogue-stimulated neutrophils implicates a role for actin and actin-interacting proteins in Rac2-mediated granule exocytosis. Proteome Science, 2011, 9, 70.	0.7	12
69	Calcitriol Reduces Eosinophil Necrosis Which Leads to the Diminished Release of Cytotoxic Granules. International Archives of Allergy and Immunology, 2016, 171, 119-129.	0.9	12
70	A report from the International Eosinophil Society: Eosinophils in a tug of war. Journal of Allergy and Clinical Immunology, 2001, 108, 895-900.	1.5	11
71	Assessment of 1 H NMR-based metabolomics analysis for normalization of urinary metals against creatinine. Clinica Chimica Acta, 2017, 464, 37-43.	0.5	11
72	Eosinophil Shape Change and Secretion. Methods in Molecular Biology, 2014, 1178, 111-128.	0.4	11

#	Article	IF	Citations
73	Molecular Mechanisms in Eosinophil Activation. , 2000, 78, 189-198.		10
74	Effects of Clarithromycin on Inflammatory Cell Mediator Release and Survival. Chemotherapy, 2005, 51, 206-210.	0.8	10
75	Eosinophil peroxidase oxidizes isoniazid to form the active metabolite against M. tuberculosis, isoniazid-NAD+. Chemico-Biological Interactions, 2019, 305, 48-53.	1.7	9
76	28 days later: eosinophils stop viruses. Blood, 2014, 123, 609-611.	0.6	5
77	Sputum autoantibody-mediated macrophage dysfunction in severe eosinophilic asthmatics with recurrent infections. Journal of Allergy and Clinical Immunology, 2019, 143, AB189.	1.5	5
78	Short-Term Acute Exposure to Wildfire Smoke and Lung Function among Royal Canadian Mounted Police (RCMP) Officers. International Journal of Environmental Research and Public Health, 2021, 18, 11787.	1.2	5
79	A new way of trapping bugs: neutrophil microvesicles. Blood, 2013, 121, 420-421.	0.6	4
80	Comparison of computational approaches for identification and quantification of urinary metabolites in ¹ H NMR spectra. Analytical Methods, 2018, 10, 2129-2137.	1.3	4
81	Cytokine trafficking of IL-9 and IL-13 through TfnRc+ vesicles in activated human eosinophils. Journal of Leukocyte Biology, 2021, 109, 753-762.	1.5	4
82	Structural and posttranslational analysis of human calciumâ€binding protein, spermatidâ€associated 1. Journal of Cellular Biochemistry, 2020, 121, 4945-4958.	1.2	3
83	Eosinophil Shape Change and Secretion. Methods in Molecular Biology, 2021, 2241, 199-219.	0.4	3
84	Biology of Eosinophils. , 2009, , 295-310.		3
85	Intracellular Localization of Interleukin-6 in Eosinophils From Atopic Asthmatics and Effects of Interferon \hat{I}^3 . Blood, 1998, 91, 2508-2516.	0.6	3
86	Inhibition of neutrophil respiratory burst and degranulation responses by CVT-E002, the main active ingredient in COLD-FX. Allergy, Asthma and Clinical Immunology, $2011, 7, \ldots$	0.9	2
87	Trafficking of TNF via recycling endosomes in neutrophils. Allergy, Asthma and Clinical Immunology, 2014, 10, .	0.9	2
88	Pathogenic Autoantibodies in Patients with Severe Asthma and Sputum Eosinophils. Journal of Allergy and Clinical Immunology, 2016, 137, AB409.	1.5	2
89	Assessment of Lung Eosinophils In Situ Using Immunohistological Staining. Methods in Molecular Biology, 2021, 2223, 237-266.	0.4	2
90	Role of Living Conditions and Socioenvironmental Factors on Chronotype in Adolescents. Adolescents, 2021, 1, 95-107.	0.3	2

#	Article	IF	CITATIONS
91	Molecular Biology of Eosinophils: Introduction. Methods in Molecular Biology, 2021, 2241, 1-14.	0.4	2
92	Gr1 makes an unexpected cameo appearance in eosinophils. Journal of Leukocyte Biology, 2020, 107, 363-365.	1.5	2
93	The Influence of Artificial Light at Night on Asthma and Allergy, Mental Health, and Cancer Outcomes: A Systematic Scoping Review Protocol. International Journal of Environmental Research and Public Health, 2022, 19, 8522.	1.2	2
94	Salt-soluble collagen and elastin in the human aorta and pulmonary artery. Experimental and Molecular Pathology, 1991, 55, 25-29.	0.9	1
95	Dataset of urinary metabolites measured by 1 H NMR analysis of normal human urine. Data in Brief, 2017, 10, 227-229.	0.5	1
96	Regulatory Mechanisms in Neutrophil Degranulation. , 2018, , 191-210.		1
97	Functionally Active Eosinophil Purification from Peripheral Blood. Methods in Molecular Biology, 2021, 2241, 15-25.	0.4	1
98	Late Breaking Abstract - Analysis of chronic occupational exposure in non-smoking insulators. , 2018, , .		1
99	Chronic effects of occupational exposure to mineral fibres and recurrent chest infections in insulators. ERJ Open Research, 2022, 8, 00095-2022.	1.1	1
100	Tracing Intracellular Mediator Storage and Mobilization in Eosinophils. , 2001, 56, 367-381.		0
101	Fluticasone Reduces CRP in COPD. American Journal of Respiratory and Critical Care Medicine, 2005, 171, 1191-1192.	2.5	0
102	Dendritic cells thrive on Rac1. Blood, 2005, 105, 433-433.	0.6	0
103	Rac2 Function in Eosinophil Superoxide Generation and Allergic Airway Inflammation. Journal of Allergy and Clinical Immunology, 2008, 121, S42-S43.	1.5	0
104	Mutations in CCR3 render it missing in action. Journal of Allergy and Clinical Immunology, 2010, 126, 158-159.	1.5	0
105	Neutrophil Effector Responses Are Inhibited By CVT-E002, The Active Ingredient Of COLD-FX., 2012, , .		0
106	Calcitriol reduces eosinophil cytolysis and release of cytotoxic granules in vitro. Allergy, Asthma and Clinical Immunology, 2014, 10 , .	0.9	0
107	The SNARE VAMP-7 Contributes To Eosinophil Degranulation, In Vivo. Journal of Allergy and Clinical Immunology, 2014, 133, AB159.	1.5	0
108	AllerGen's 8th research conference. Allergy, Asthma and Clinical Immunology, 2016, 12, .	0.9	0

PAIGE LACY

#	Article	IF	CITATIONS
109	Editorial: Searching for definitive evidence of the role of eosinophils in lung disease: are we there yet?. Journal of Leukocyte Biology, 2017, 102, 571-573.	1.5	O
110	Asbestos-Related Lung Disease in Industrial Workers That Have Never Reported Exposure to Asbestos?. , 2020, , .		0
111	Longitudinal analysis of chronic occupational exposure in insulators. , 2019, , .		O
112	Occupational exposure to ceramic fibers and respiratory health among insulators. , 2020, , .		0