Graham Hutchings

List of Publications by Citations

Source: https://exaly.com/author-pdf/1861563/graham-hutchings-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

85 34,112 171 500 h-index g-index citations papers 8.2 7.49 521 37,450 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
500	Gold catalysis. Angewandte Chemie - International Edition, 2006, 45, 7896-936	16.4	3063
499	Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalysts. <i>Science</i> , 2006 , 311, 362-5	33.3	1811
498	Identification of active gold nanoclusters on iron oxide supports for CO oxidation. <i>Science</i> , 2008 , 321, 1331-5	33.3	1308
497	Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions. <i>Nature</i> , 2005 , 437, 1132-5	50.4	888
496	Designing bimetallic catalysts for a green and sustainable future. <i>Chemical Society Reviews</i> , 2012 , 41, 8099-139	58.5	820
495	Gold-Katalyse. Angewandte Chemie, 2006 , 118, 8064-8105	3.6	815
494	Switching off hydrogen peroxide hydrogenation in the direct synthesis process. <i>Science</i> , 2009 , 323, 103	7 3 4,13	629
493	Solvent-free oxidation of primary carbon-hydrogen bonds in toluene using Au-Pd alloy nanoparticles. <i>Science</i> , 2011 , 331, 195-9	33.3	624
492	Facile removal of stabilizer-ligands from supported gold nanoparticles. <i>Nature Chemistry</i> , 2011 , 3, 551-	6 17.6	458
491	Selective oxidation of glycerol to glyceric acid using a gold catalyst in aqueous sodium hydroxide. <i>Chemical Communications</i> , 2002 , 696-7	5.8	456
490	Direct formation of hydrogen peroxide from H2/O2 using a gold catalyst. <i>Chemical Communications</i> , 2002 , 2058-9	5.8	453
489	Oxidation of glycerol using supported Pt, Pd and Au catalysts. <i>Physical Chemistry Chemical Physics</i> , 2003 , 5, 1329-1336	3.6	413
488	Direct catalytic conversion of methane to methanol in an aqueous medium by using copper-promoted Fe-ZSM-5. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 5129-33	16.4	376
487	Goldan introductory perspective. <i>Chemical Society Reviews</i> , 2008 , 37, 1759-65	58.5	351
486	Direct synthesis of hydrogen peroxide from H2 and O2 using Pd and Au catalysts. <i>Physical Chemistry Chemical Physics</i> , 2003 , 5, 1917-1923	3.6	318
485	Palladium-tin catalysts for the direct synthesis of HDD with high selectivity. Science, 2016, 351, 965-8	33.3	314
484	Nanocrystalline gold and gold palladium alloy catalysts for chemical synthesis. <i>Chemical Communications</i> , 2008 , 1148-64	5.8	304

483	Catalysis by gold. Catalysis Today, 2005, 100, 55-61	5.3	303
482	Oxidative coupling of methane using oxide catalysts. <i>Chemical Society Reviews</i> , 1989 , 18, 251	58.5	302
481	Aqueous Au-Pd colloids catalyze selective CH oxidation to CHOH with O under mild conditions. <i>Science</i> , 2017 , 358, 223-227	33.3	299
480	Role of gold cations in the oxidation of carbon monoxide catalyzed by iron oxide-supported gold. <i>Journal of Catalysis</i> , 2006 , 242, 71-81	7.3	289
479	Identification of single-site gold catalysis in acetylene hydrochlorination. <i>Science</i> , 2017 , 355, 1399-1403	33.3	285
478	Palladium and gold-palladium catalysts for the direct synthesis of hydrogen peroxide. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 9192-8	16.4	270
477	De novo design of structure-directing agents for the synthesis of microporous solids. <i>Nature</i> , 1996 , 382, 604-606	50.4	260
476	Mechanistic Aspects of the Formation of Hydrocarbons and Alcohols from CO Hydrogenation. <i>Catalysis Reviews - Science and Engineering</i> , 1993 , 35, 1-127	12.6	253
475	Designer titania-supported Au-Pd nanoparticles for efficient photocatalytic hydrogen production. <i>ACS Nano</i> , 2014 , 8, 3490-7	16.7	249
474	Pd/ZnO catalysts for direct CO2 hydrogenation to methanol. <i>Journal of Catalysis</i> , 2016 , 343, 133-146	7-3	248
473	Discovery, Development, and Commercialization of Gold Catalysts for Acetylene Hydrochlorination. Journal of the American Chemical Society, 2015 , 137, 14548-57	16.4	223
472	Glycerol oxidation using gold-containing catalysts. <i>Accounts of Chemical Research</i> , 2015 , 48, 1403-12	24.3	220
47 ¹	Selective oxidation of 5-hydroxymethyl-2-furfural using supported goldflopper nanoparticles. <i>Green Chemistry</i> , 2011 , 13, 2091	10	21 0
470	Selective liquid phase oxidation with supported metal nanoparticles. <i>Chemical Science</i> , 2012 , 3, 20-44	9.4	201
469	Uranium-oxide-based catalysts for the destruction of volatile chloro-organic compounds. <i>Nature</i> , 1996 , 384, 341-343	50.4	201
468	Selective oxidation of glycerol by highly active bimetallic catalysts at ambient temperature under base-free conditions. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 10136-9	16.4	196
467	Oxidation of Glycerol Using Supported Gold Catalysts. <i>Topics in Catalysis</i> , 2004 , 27, 131-136	2.3	193
466	Hydrochlorination of acetylene using gold catalysts: A study of catalyst deactivation. <i>Journal of Catalysis</i> , 1991 , 128, 366-377	7.3	191

465	Hydrochlorination of acetylene using carbon-supported gold catalysts: A study of catalyst reactivation. <i>Journal of Catalysis</i> , 1991 , 128, 378-386	7.3	189
464	Direct synthesis of H(2)O(2) from H(2) and O(2) over gold, palladium, and gold-palladium catalysts supported on acid-pretreated TiO(2). <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 8512-5	16.4	187
463	Direct synthesis of hydrogen peroxide and benzyl alcohol oxidation using Au-Pd catalysts prepared by sol immobilization. <i>Langmuir</i> , 2010 , 26, 16568-77	4	185
462	Direct synthesis of hydrogen peroxide from H2 and O2 using supported Au-Pd catalysts. <i>Faraday Discussions</i> , 2008 , 138, 225-39; discussion 317-35, 433-4	3.6	184
461	Solvent-free Oxidation of Primary Alcohols to Aldehydes using Supported Gold Catalysts. <i>Catalysis Letters</i> , 2005 , 103, 43-52	2.8	179
460	Role of the product in the transformation of a catalyst to its active state. <i>Nature</i> , 1994 , 368, 41-45	50.4	173
459	Direct Synthesis of Hydrogen Peroxide from H2and O2Using Al2O3Supported Au P d Catalysts. <i>Chemistry of Materials</i> , 2006 , 18, 2689-2695	9.6	171
458	Oxidation of methane to methanol with hydrogen peroxide using supported gold-palladium alloy nanoparticles. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 1280-4	16.4	169
457	Hydrochlorination of acetylene using supported bimetallic Au-based catalysts. <i>Journal of Catalysis</i> , 2008 , 257, 190-198	7.3	168
456	Direct synthesis of hydrogen peroxide from H2 and O2 using AuPd/Fe2O3 catalysts. <i>Journal of Materials Chemistry</i> , 2005 , 15, 4595		168
455	A Comparison of the Adsorption and Diffusion of Hydrogen on the {111} Surfaces of Ni, Pd, and Pt from Density Functional Theory Calculations. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 4889-4894	3.4	168
454	Strategies for the synthesis of supported gold palladium nanoparticles with controlled morphology and composition. <i>Accounts of Chemical Research</i> , 2013 , 46, 1759-72	24.3	155
453	Reactivation of a supported gold catalyst for acetylene hydrochlorination. <i>Journal of the Chemical Society Chemical Communications</i> , 1988 , 71		151
452	Modified zeolite ZSM-5 for the methanol to aromatics reaction. <i>Catalysis Science and Technology</i> , 2012 , 2, 105-112	5.5	149
451	Strategies for designing supported gold-palladium bimetallic catalysts for the direct synthesis of hydrogen peroxide. <i>Accounts of Chemical Research</i> , 2014 , 47, 845-54	24.3	147
450	Advances in the direct synthesis of hydrogen peroxide from hydrogen and oxygen. <i>Catalysis Today</i> , 2015 , 248, 3-9	5.3	142
449	Solvent free liquid phase oxidation of benzyl alcohol using Au supported catalysts prepared using a sol immobilization technique. <i>Catalysis Today</i> , 2007 , 122, 317-324	5.3	141
448	Oxidation of glycerol using gold-palladium alloy-supported nanocrystals. <i>Physical Chemistry Chemical Physics</i> , 2009 , 11, 4952-61	3.6	137

(2016-2014)

447	The benzaldehyde oxidation paradox explained by the interception of peroxy radical by benzyl alcohol. <i>Nature Communications</i> , 2014 , 5, 3332	17.4	135
446	Catalysis: A golden future 1996 , 29, 123-130		132
445	Role of the Support in Gold-Containing Nanoparticles as Heterogeneous Catalysts. <i>Chemical Reviews</i> , 2020 , 120, 3890-3938	68.1	131
444	Au-Pd supported nanocrystals prepared by a sol immobilisation technique as catalysts for selective chemical synthesis. <i>Physical Chemistry Chemical Physics</i> , 2008 , 10, 1921-30	3.6	130
443	Aqua regia activated Au/C catalysts for the hydrochlorination of acetylene. <i>Journal of Catalysis</i> , 2013 , 297, 128-136	7.3	123
442	Oxidation of alcohols using supported gold and goldpalladium nanoparticles. <i>Faraday Discussions</i> , 2010 , 145, 341-356	3.6	123
441	Solvent-free oxidation of benzyl alcohol using Au-Pd catalysts prepared by sol immobilisation. <i>Physical Chemistry Chemical Physics</i> , 2009 , 11, 5142-53	3.6	119
440	Au P d supported nanocrystals as catalysts for the direct synthesis of hydrogen peroxide from H2 and O2. <i>Green Chemistry</i> , 2008 , 10, 388-394	10	118
439	Heterogeneous catalystsdiscovery and design. <i>Journal of Materials Chemistry</i> , 2009 , 19, 1222-1235		117
438	Synthesis of stable ligand-free gold-palladium nanoparticles using a simple excess anion method. <i>ACS Nano</i> , 2012 , 6, 6600-13	16.7	114
437	New directions in gold catalysis 2004 , 37, 3-11		110
436	Hydrocarbon formation from methanol and dimethyl ether: a review of the experimental observations concerning the mechanism of formation of the primary products. <i>Catalysis Today</i> , 1990 , 6, 279-306	5.3	109
435	Aerobic oxidations in flow: opportunities for the fine chemicals and pharmaceuticals industries. <i>Reaction Chemistry and Engineering</i> , 2016 , 1, 595-612	4.9	109
434	Characterisation of gold catalysts. <i>Chemical Society Reviews</i> , 2016 , 45, 4953-94	58.5	107
433	Vanadium phosphate: a new look at the active components of catalysts for the oxidation of butane to maleic anhydride. <i>Journal of Materials Chemistry</i> , 2004 , 14, 3385		102
432	Elucidation and Evolution of the Active Component within Cu/Fe/ZSM-5 for Catalytic Methane Oxidation: From Synthesis to Catalysis. <i>ACS Catalysis</i> , 2013 , 3, 689-699	13.1	101
431	Aberration corrected analytical electron microscopy studies of sol-immobilized Au + Pd, Au{Pd} and Pd{Au} catalysts used for benzyl alcohol oxidation and hydrogen peroxide production. <i>Faraday Discussions</i> , 2011 , 152, 63-86; discussion 99-120	3.6	101
430	Stable amorphous georgeite as a precursor to a high-activity catalyst. <i>Nature</i> , 2016 , 531, 83-7	50.4	100

429	Energy dispersive X-ray spectroscopy of bimetallic nanoparticles in an aberration corrected scanning transmission electron microscope. <i>Faraday Discussions</i> , 2008 , 138, 337-51; discussion 421-34	3.6	98
428	Solvent-free oxidation of benzyl alcohol using titania-supported goldpalladium catalysts: Effect of AuPd ratio on catalytic performance. <i>Catalysis Today</i> , 2007 , 122, 407-411	5.3	96
427	Comparison of supports for the direct synthesis of hydrogen peroxide from H2 and O2 using Au P d catalysts. <i>Catalysis Today</i> , 2007 , 122, 397-402	5.3	95
426	Rubidium- and caesium-doped silicotungstic acid catalysts supported on alumina for the catalytic dehydration of glycerol to acrolein. <i>Journal of Catalysis</i> , 2012 , 286, 206-213	7.3	94
425	Controlling the duality of the mechanism in liquid-phase oxidation of benzyl alcohol catalysed by supported Au-Pd nanoparticles. <i>Chemistry - A European Journal</i> , 2011 , 17, 6524-32	4.8	94
424	Reactivation of a Carbon-supported Gold Catalyst for the Hydrochlorination of Acetylene. <i>Catalysis Letters</i> , 2008 , 124, 165-167	2.8	93
423	Solvent-free oxidation of benzyl alcohol with oxygen using zeolite-supported Au and Au P d catalysts. <i>Catalysis Letters</i> , 2006 , 110, 7-13	2.8	92
422	Tuning of catalytic sites in Pt/TiO2 catalysts for the chemoselective hydrogenation of 3-nitrostyrene. <i>Nature Catalysis</i> , 2019 , 2, 873-881	36.5	91
421	Selective formation of lactate by oxidation of 1,2-propanediol using gold palladium alloy supported nanocrystals. <i>Green Chemistry</i> , 2009 , 11, 1209	10	89
420	Recent Advances in the Direct Synthesis of H2O2. ChemCatChem, 2019, 11, 298-308	5.2	88
419	Modifications of the metal and support during the deactivation and regeneration of Au/C catalysts for the hydrochlorination of acetylene. <i>Catalysis Science and Technology</i> , 2013 , 3, 128-134	5.5	87
418	The direct synthesis of hydrogen peroxide using platinum-promoted gold-palladium catalysts. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 2381-4	16.4	86
417	Continuous selective oxidation of methane to methanol over Cu- and Fe-modified ZSM-5 catalysts in a flow reactor. <i>Catalysis Today</i> , 2016 , 270, 93-100	5.3	85
416	Catalytic and mechanistic insights of the low-temperature selective oxidation of methane over Cu-promoted Fe-ZSM-5. <i>Chemistry - A European Journal</i> , 2012 , 18, 15735-45	4.8	85
415	Selective oxidation of CO in the presence of H2, H2O and CO2 utilising Au/年e2O3 catalysts for use in fuel cells. <i>Journal of Materials Chemistry</i> , 2006 , 16, 199-208		84
414	Au-Pd nanoalloys supported on Mg-Al mixed metal oxides as a multifunctional catalyst for solvent-free oxidation of benzyl alcohol. <i>Dalton Transactions</i> , 2013 , 42, 14498-508	4.3	83
413	Heterogeneous enantioselective catalyzed carbonyl- and imino-ene reactions using copper bis(oxazoline) zeolite Y. <i>Angewandte Chemie - International Edition</i> , 2004 , 43, 1685-8	16.4	83
412	Ceria prepared using supercritical antisolvent precipitation: a green support for goldBalladium nanoparticles for the selective catalytic oxidation of alcohols. <i>Journal of Materials Chemistry</i> , 2009 , 19, 8619		82

411	Aqueous-Phase Methane Oxidation over Fe-MFI Zeolites; Promotion through Isomorphous Framework Substitution. <i>ACS Catalysis</i> , 2013 , 3, 1835-1844	13.1	79
410	The role of the support in achieving high selectivity in the direct formation of hydrogen peroxide. <i>Green Chemistry</i> , 2008 , 10, 1162	10	78
409	Efficient green methanol synthesis from glycerol. <i>Nature Chemistry</i> , 2015 , 7, 1028-32	17.6	77
408	Effect of Reaction Conditions on the Direct Synthesis of Hydrogen Peroxide with a AuPd/TiO2 Catalyst in a Flow Reactor. <i>ACS Catalysis</i> , 2013 , 3, 487-501	13.1	77
407	Low-temperature redox activity in co-precipitated catalysts: a comparison between gold and platinum-group metals. <i>Catalysis Today</i> , 2002 , 72, 107-113	5.3	77
406	Studies of the role of the copper promoter in the iron oxide/chromia high temperature water gas shift catalyst. <i>Physical Chemistry Chemical Physics</i> , 2003 , 5, 2719	3.6	77
405	New approaches to designing selective oxidation catalysts: Au/C a versatile catalyst. <i>Topics in Catalysis</i> , 2006 , 38, 223-230	2.3	75
404	Selective conversion of cyclohexane to cyclohexanol and cyclohexanone using a gold catalyst under mild conditions. <i>Catalysis Letters</i> , 2005 , 101, 175-179	2.8	75
403	Microstructural Development and Catalytic Performance of AuPd Nanoparticles on Al2O3 Supports: The Effect of Heat Treatment Temperature and Atmosphere. <i>Chemistry of Materials</i> , 2008 , 20, 1492-1501	9.6	74
402	Electrocatalytic synthesis of hydrogen peroxide on Au-Pd nanoparticles: From fundamentals to continuous production. <i>Chemical Physics Letters</i> , 2017 , 683, 436-442	2.5	73
401	Direct Catalytic Conversion of Methane to Methanol in an Aqueous Medium by using Copper-Promoted Fe-ZSM-5. <i>Angewandte Chemie</i> , 2012 , 124, 5219-5223	3.6	73
400	Ruthenium Nanoparticles Supported on Carbon: An Active Catalyst for the Hydrogenation of Lactic Acid to 1,2-Propanediol. <i>ACS Catalysis</i> , 2015 , 5, 5047-5059	13.1	72
399	Oxidation of glycerol to glycolate by using supported gold and palladium nanoparticles. <i>ChemSusChem</i> , 2009 , 2, 1145-51	8.3	72
398	Oxidation of benzyl alcohol using supported goldpalladium nanoparticles. <i>Catalysis Today</i> , 2011 , 163, 47-54	5.3	71
397	Green Catalysis with Alternative Feedstocks. <i>Topics in Catalysis</i> , 2009 , 52, 258-268	2.3	71
396	Co-precipitated copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation: effect of precipitate ageing on catalyst activity. <i>Physical Chemistry Chemical Physics</i> , 2002 , 4, 5915-5920	3.6	71
395	Ambient temperature CO oxidation using copper manganese oxide catalysts prepared by coprecipitation: effect of ageing on catalyst performance. <i>Catalysis Letters</i> , 1996 , 42, 21-24	2.8	71
394	Oxidation of glycerol with hydrogen peroxide using silicalite and aluminophosphate catalysts. Catalysis Letters, 1999, 63, 193-197	2.8	70

393	Methyl Formate Formation from Methanol Oxidation Using Supported GoldPalladium Nanoparticles. <i>ACS Catalysis</i> , 2015 , 5, 637-644	13.1	69
392	Control of product selectivity in the partial oxidation of methane. <i>Nature</i> , 1990 , 348, 428-429	50.4	69
391	Selective Oxidation of Methane to Methanol Using Supported AuPd Catalysts Prepared by Stabilizer-Free Sol-Immobilization. <i>ACS Catalysis</i> , 2018 , 8, 2567-2576	13.1	68
390	Characterization of Au3+ Species in Au/C Catalysts for the Hydrochlorination Reaction of Acetylene. <i>Catalysis Letters</i> , 2014 , 144, 1-8	2.8	68
389	Copper manganese oxide catalysts for ambient temperature carbon monoxide oxidation: Effect of calcination on activity. <i>Journal of Molecular Catalysis A</i> , 2009 , 305, 121-124		68
388	Catalytic asymmetric heterogeneous aziridination of styrene using CuHY: effect of nitrene donor on enantioselectivity. <i>Perkin Transactions II RSC</i> , 2001 , 1714-1723		68
387	Oxidation of benzyl alcohol using supported goldpalladium nanoparticles. <i>Catalysis Today</i> , 2011 , 164, 315-319	5.3	67
386	Tailoring the selectivity of glycerol oxidation by tuning the acidBase properties of Au catalysts. <i>Catalysis Science and Technology</i> , 2015 , 5, 1126-1132	5.5	65
385	Partial oxidation of ethane to oxygenates using Fe- and Cu-containing ZSM-5. <i>Journal of the American Chemical Society</i> , 2013 , 135, 11087-99	16.4	65
384	Nanocrystalline gold and gold-palladium alloy oxidation catalysts: a personal reflection on the nature of the active sites. <i>Dalton Transactions</i> , 2008 , 5523-36	4.3	64
383	Enantioselective epoxidation of (Z)-stilbene using a chiral Mn(III)Balen complex: effect of immobilisation on MCM-41 on product selectivity. <i>Perkin Transactions II RSC</i> , 2000 , 2008-2015		64
382	Reaction and Raman spectroscopic studies of alcohol oxidation on goldpalladium catalysts in microstructured reactors. <i>Chemical Engineering Journal</i> , 2011 , 167, 734-743	14.7	63
381	Redispersion of Gold Supported on Oxides. ACS Catalysis, 2012, 2, 552-560	13.1	62
380	Base-free oxidation of glycerol using titania-supported trimetallic AuBdPt nanoparticles. <i>ChemSusChem</i> , 2014 , 7, 1326-34	8.3	61
379	The effect of catalyst preparation method on the performance of supported Au P d catalysts for the direct synthesis of hydrogen peroxide. <i>Green Chemistry</i> , 2010 , 12, 915	10	60
378	Effect of halide and acid additives on the direct synthesis of hydrogen peroxide using supported gold-palladium catalysts. <i>ChemSusChem</i> , 2009 , 2, 575-80	8.3	60
377	Synergy and Anti-Synergy between Palladium and Gold in Nanoparticles Dispersed on a Reducible Support. <i>ACS Catalysis</i> , 2016 , 6, 6623-6633	13.1	59
376	Heterogeneous Gold Catalysis. ACS Central Science, 2018, 4, 1095-1101	16.8	59

375	Base-free glucose oxidation using air with supported gold catalysts. <i>Green Chemistry</i> , 2014 , 16, 3132-3	14:1o	59
374	Ambient temperature carbon monoxide oxidation using copper manganese oxide catalysts: Effect of residual Na+ acting as catalyst poison. <i>Catalysis Communications</i> , 2003 , 4, 17-20	3.2	59
373	Gold P alladium Bimetallic Catalyst Stability: Consequences for Hydrogen Peroxide Selectivity. <i>ACS Catalysis</i> , 2017 , 7, 5699-5705	13.1	58
372	PdZn catalysts for CO hydrogenation to methanol using chemical vapour impregnation (CVI). <i>Faraday Discussions</i> , 2017 , 197, 309-324	3.6	58
371	High-activity Au/CuO᠒nO catalysts for the oxidation ofcarbon monoxide at ambient temperature. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1997 , 93, 187-188		58
370	Direct synthesis of hydrogen peroxide from H2 and O2 and in situ oxidation using zeolite-supported catalysts. <i>Catalysis Communications</i> , 2007 , 8, 247-250	3.2	57
369	Investigation of the active species in the carbon-supported gold catalyst for acetylene hydrochlorination. <i>Catalysis Science and Technology</i> , 2016 , 6, 5144-5153	5.5	56
368	Direct synthesis of hydrogen peroxide from H2 and O2 using zeolite-supported Au-Pd catalysts. <i>Catalysis Today</i> , 2007 , 122, 361-364	5.3	56
367	Effect of heat treatment on AuPd catalysts synthesized by sol immobilisation for the direct synthesis of hydrogen peroxide and benzyl alcohol oxidation. <i>Catalysis Science and Technology</i> , 2013 , 3, 308-317	5.5	55
366	Direct synthesis of hydrogen peroxide using Au P d-exchanged and supported heteropolyacid catalysts at ambient temperature using water as solvent. <i>Green Chemistry</i> , 2012 , 14, 170-181	10	55
365	Switching-off toluene formation in the solvent-free oxidation of benzyl alcohol using supported trimetallic Au-Pd-Pt nanoparticles. <i>Faraday Discussions</i> , 2013 , 162, 365-78	3.6	55
364	Solvent-free selective epoxidation of cyclooctene using supported gold catalysts. <i>Green Chemistry</i> , 2009 , 11, 1037	10	55
363	Effect of the reaction conditions on the performance of Au-Pd/TiO(2) catalyst for the direct synthesis of hydrogen peroxide. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 2488-92	3.6	54
362	Promotion in Heterogeneous Catalysis: A Topic Requiring a New Approach?. <i>Catalysis Letters</i> , 2001 , 75, 1-12	2.8	54
361	Identification of the catalytically active component of Cuard catalyst for the hydrogenation of levulinic acid to Evalerolactone. <i>Green Chemistry</i> , 2017 , 19, 225-236	10	53
360	Enhanced selective glycerol oxidation in multiphase structured reactors. <i>Catalysis Today</i> , 2009 , 145, 16	9- <u>4</u> .75	53
359	Catalytic asymmetric epoxidation of stilbene using a chiral salen complex immobilized in Mn-exchanged Al-MCM-41. <i>Perkin Transactions II RSC</i> , 2000 , 143-148		53
358	Elucidating the Role of CO2 in the Soft Oxidative Dehydrogenation of Propane over Ceria-Based Catalysts. <i>ACS Catalysis</i> , 2018 , 8, 3454-3468	13.1	52

357	Selective suppression of disproportionation reaction in solvent-less benzyl alcohol oxidation catalysed by supported Au P d nanoparticles. <i>Catalysis Today</i> , 2013 , 203, 146-152	5.3	52
356	The selective oxidation of 1,2-propanediol to lactic acid using mild conditions and gold-based nanoparticulate catalysts. <i>Catalysis Today</i> , 2013 , 203, 139-145	5.3	51
355	Cyclohexane oxidation using Au/MgO: an investigation of the reaction mechanism. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 16279-85	3.6	51
354	Reactivity of Ga2O3 Clusters on Zeolite ZSM-5 for the Conversion of Methanol to Aromatics. <i>Catalysis Letters</i> , 2012 , 142, 1049-1056	2.8	51
353	The effect of heat treatment on phase formation of copper manganese oxide: Influence on catalytic activity for ambient temperature carbon monoxide oxidation. <i>Journal of Catalysis</i> , 2011 , 281, 279-289	7.3	51
352	Selective Oxidation of Glycerol by Highly Active Bimetallic Catalysts at Ambient Temperature under Base-Free Conditions. <i>Angewandte Chemie</i> , 2011 , 123, 10318-10321	3.6	51
351	Population and hierarchy of active species in gold iron oxide catalysts for carbon monoxide oxidation. <i>Nature Communications</i> , 2016 , 7, 12905	17.4	50
350	Conversion of furfuryl alcohol into 2-methylfuran at room temperature using Pd/TiO2 catalyst. <i>Catalysis Science and Technology</i> , 2014 , 4, 2280-2286	5.5	49
349	The controlled catalytic oxidation of furfural to furoic acid using AuPd/Mg(OH)2. <i>Catalysis Science and Technology</i> , 2017 , 7, 5284-5293	5.5	49
348	Solvent-free selective epoxidation of cyclooctene using supported gold catalysts: an investigation of catalyst re-use. <i>Green Chemistry</i> , 2011 , 13, 127-134	10	49
347	Efficient Elimination of Chlorinated Organics on a Phosphoric Acid Modified CeO Catalyst: A Hydrolytic Destruction Route. <i>Environmental Science & Environmental Science & Env</i>	10.3	48
346	Gold Catalysis: A Reflection on Where We are Now. <i>Catalysis Letters</i> , 2015 , 145, 71-79	2.8	48
345	Direct synthesis of hydrogen peroxide from H2 and O2 using zeolite-supported Au catalysts. <i>Catalysis Today</i> , 2006 , 114, 369-371	5.3	47
344	Facile synthesis of precious-metal single-site catalysts using organic solvents. <i>Nature Chemistry</i> , 2020 , 12, 560-567	17.6	46
343	Acetylene hydrochlorination using Au/carbon: a journey towards single site catalysis. <i>Chemical Communications</i> , 2017 , 53, 11733-11746	5.8	46
342	Au/ZnO and Au/Fe2O3 catalysts for CO oxidation at ambient temperature: comments on the effect of synthesis conditions on the preparation of high activity catalysts prepared by coprecipitation. <i>Topics in Catalysis</i> , 2007 , 44, 123-128	2.3	46
341	HETEROGENEOUS ASYMMETRIC CATALYSTS: Strategies for Achieving High Enantioselection. <i>Annual Review of Materials Research</i> , 2005 , 35, 143-166	12.8	46
340	Heterogeneous Enantioselective Synthesis of a Dihydropyran Using Cu-Exchanged Microporous and Mesoporous Materials Modified by Bis(oxazoline). <i>Catalysis Letters</i> , 2003 , 91, 145-148	2.8	46

339	Deactivation of a Single-Site Gold-on-Carbon Acetylene Hydrochlorination Catalyst: An X-ray Absorption and Inelastic Neutron Scattering Study. <i>ACS Catalysis</i> , 2018 , 8, 8493-8505	13.1	43
338	Oxidation of Methane to Methanol with Hydrogen Peroxide Using Supported Gold P alladium Alloy Nanoparticles. <i>Angewandte Chemie</i> , 2013 , 125, 1318-1322	3.6	43
337	Gold, palladium and goldpalladium supported nanoparticles for the synthesis of glycerol carbonate from glycerol and urea. <i>Catalysis Science and Technology</i> , 2012 , 2, 1914	5.5	43
336	Base-free oxidation of glucose to gluconic acid using supported gold catalysts. <i>Catalysis Science and Technology</i> , 2016 , 6, 107-117	5.5	42
335	Low temperature selective oxidation of methane to methanol using titania supported gold palladium copper catalysts. <i>Catalysis Science and Technology</i> , 2016 , 6, 3410-3418	5.5	42
334	Synthesis of high surface area CuMn2O4 by supercritical anti-solvent precipitation for the oxidation of CO at ambient temperature. <i>Catalysis Science and Technology</i> , 2011 , 1, 740	5.5	42
333	Mechanistic Insight into the Interaction Between a Titanium Dioxide Photocatalyst and Pd Cocatalyst for Improved Photocatalytic Performance. <i>ACS Catalysis</i> , 2016 , 6, 4239-4247	13.1	41
332	Effect of acid pre-treatment on AuPd/SiO2 catalysts for the direct synthesis of hydrogen peroxide. <i>Catalysis Science and Technology</i> , 2013 , 3, 812-818	5.5	41
331	Understanding the solvent effect on the catalytic oxidation of 1,4-butanediol in methanol over Au/TiO2 catalyst: NMR diffusion and relaxation studies. <i>Chemistry - A European Journal</i> , 2012 , 18, 14426	- 4 .8	40
330	Solvent effect and reactivity trend in the aerobic oxidation of 1,3-propanediols over gold supported on titania: NMR diffusion and relaxation studies. <i>Chemistry - A European Journal</i> , 2013 , 19, 11725-32	4.8	40
329	Hydrodynamic effects on three phase micro-packed bed reactor performance Goldpalladium catalysed benzyl alcohol oxidation. <i>Chemical Engineering Science</i> , 2016 , 149, 129-142	4.4	40
328	On the development of kinetic models for solvent-free benzyl alcohol oxidation over a gold-palladium catalyst. <i>Chemical Engineering Journal</i> , 2018 , 342, 196-210	14.7	40
327	Light alkane oxidation using catalysts prepared by chemical vapour impregnation: tuning alcohol selectivity through catalyst pre-treatment. <i>Chemical Science</i> , 2014 , 5, 3603-3616	9.4	39
326	Green preparation of transition metal oxide catalysts using supercritical CO2 anti-solvent precipitation for the total oxidation of propane. <i>Applied Catalysis B: Environmental</i> , 2013 , 140-141, 671-6	5 7 58	39
325	In situ spectroscopic investigation of oxidative dehydrogenation and disproportionation of benzyl alcohol. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 12147-55	3.6	39
324	Continuous Heterogeneously Catalyzed Oxidation of Benzyl Alcohol Using a Tube-in-Tube Membrane Microreactor. <i>Industrial & Engineering Chemistry Research</i> , 2015 , 54, 4183-4189	3.9	39
323	Amorphous Vanadium Phosphate Catalysts from Supercritical Antisolvent Precipitation. <i>Journal of Catalysis</i> , 2001 , 197, 232-235	7.3	39
322	Epoxidation of allyl alcohol to glycidol using titanium silicalite TS-1: effect of the method of preparation. <i>Catalysis Letters</i> , 1995 , 33, 369-385	2.8	39

321	Epoxidation of allyl alcohol to glycidol using titanium silicalite TS-1: effect of the reaction conditions and catalyst acidity. <i>Catalysis Letters</i> , 1996 , 39, 83-90	2.8	39
320	Identification of body-centred cubic cobalt and its importance in CO hydrogenation. <i>Nature</i> , 1989 , 339, 129-130	50.4	39
319	Reactions of Alkynes Using Heterogeneous and Homogeneous Cationic Gold Catalysts. <i>Topics in Catalysis</i> , 2008 , 48, 55-59	2.3	38
318	Unexpected promotion of Au/TiO2 by nitrate for CO oxidation. <i>Chemical Communications</i> , 2005 , 2351-3	5.8	38
317	A chemo-enzymatic oxidation cascade to activate C-H bonds with in situ generated HO. <i>Nature Communications</i> , 2019 , 10, 4178	17.4	37
316	Hydrogenation of CO2 to Dimethyl Ether over Brlisted Acidic PdZn Catalysts. <i>Industrial &</i> Engineering Chemistry Research, 2018 , 57, 6821-6829	3.9	37
315	Vinyl chloride monomer production catalysed by gold: A review. <i>Chinese Journal of Catalysis</i> , 2016 , 37, 1600-1607	11.3	37
314	Methanol to hydrocarbons: enhanced aromatic formation using a composite Ga2O3-H-ZSM-5 catalyst. <i>Chemical Communications</i> , 2001 , 1754-5	5.8	37
313	Activation and Deactivation of Gold/Ceria-Zirconia in the Low-Temperature Water-Gas Shift Reaction. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 16037-16041	16.4	36
312	Selective oxidation using supported gold bimetallic and trimetallic nanoparticles. <i>Catalysis Today</i> , 2014 , 238, 69-73	5.3	36
311	In situ X-ray studies of crotyl alcohol selective oxidation over Au/Pd(1 1 1) surface alloys. <i>Catalysis Today</i> , 2009 , 145, 251-257	5.3	36
310	Methane Activation by Selective Oxidation. <i>Topics in Catalysis</i> , 2016 , 59, 658-662	2.3	36
309	Surface functionalized TiO2 supported Pd catalysts for solvent-free selective oxidation of benzyl alcohol. <i>Catalysis Today</i> , 2015 , 250, 218-225	5.3	35
308	Selective photocatalytic oxidation of benzene for the synthesis of phenol using engineered Au-Pd alloy nanoparticles supported on titanium dioxide. <i>Chemical Communications</i> , 2014 , 50, 12612-4	5.8	35
307	Selective catalytic oxidation using supported gold-platinum and palladium-platinum nanoalloys prepared by sol-immobilisation. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 10636-44	3.6	35
306	Catalytic heterogeneous aziridination of styrene using CuHY catalyst: an assessment of catalyst stability. <i>Perkin Transactions II RSC</i> , 2001 , 1724-1728		35
305	Solvent-free aerobic oxidation of alcohols using supported gold palladium nanoalloys prepared by a modified impregnation method. <i>Catalysis Science and Technology</i> , 2014 , 4, 3120-3128	5.5	34
304	Physical mixing of metal acetates: a simple, scalable method to produce active chloride free bimetallic catalysts. <i>Chemical Science</i> , 2012 , 3, 2965	9.4	34

(2011-2004)

303	Improvement of the catalytic performance of CuMnOx catalysts for CO oxidation by the addition of Au. <i>New Journal of Chemistry</i> , 2004 , 28, 708	3.6	34	
302	Liquid phase oxidation of cyclohexane using bimetallic Au P d/MgO catalysts. <i>Applied Catalysis A: General</i> , 2015 , 504, 373-380	5.1	33	
301	Direct Synthesis of Hydrogen Peroxide over Au B d Supported Nanoparticles under Ambient Conditions. <i>Industrial & Direct Synthesis (Manager Ambient Conditions)</i> 12623-12631	3.9	33	
300	Impact of Nanoparticle-Support Interactions in CoO/AlO Catalysts for the Preferential Oxidation of Carbon Monoxide. <i>ACS Catalysis</i> , 2019 , 9, 7166-7178	13.1	33	
299	The preparation of large surface area lanthanum based perovskite supports for AuPt nanoparticles: tuning the glycerol oxidation reaction pathway by switching the perovskite B site. <i>Faraday Discussions</i> , 2016 , 188, 427-50	3.6	33	
298	Solvent inhibition in the liquid-phase catalytic oxidation of 1,4-butanediol: understanding the catalyst behaviour from NMR relaxation time measurements. <i>Catalysis Science and Technology</i> , 2016 , 6, 7896-7901	5.5	32	
297	Selective oxidation of benzyl alcohol using in situ generated H2O2 over hierarchical Au P d titanium silicalite catalysts. <i>Catalysis Science and Technology</i> , 2013 , 3, 2425	5.5	32	
296	CuAu/SiO2 catalysts for the selective oxidation of propene to acrolein: the impact of catalyst preparation variables on material structure and catalytic performance. <i>Catalysis Science and Technology</i> , 2013 , 3, 2944	5.5	32	
295	A golden future. <i>Nature Chemistry</i> , 2009 , 1, 584	17.6	32	
294	Oxidation of thioethers and sulfoxides with hydrogen peroxide using TS-1 as catalyst. <i>Physical Chemistry Chemical Physics</i> , 2000 , 2, 1523-1529	3.6	32	
293	Inter-connected and open pore hierarchical TS-1 with controlled framework titanium for catalytic cyclohexene epoxidation. <i>Catalysis Science and Technology</i> , 2018 , 8, 2211-2217	5.5	31	
292	Catalytic Asymmetric Heterogeneous Aziridination of Styrene Using CuHY/bis(oxazoline): Comments on the Factors Controlling Enantioselectivity. <i>Topics in Catalysis</i> , 2003 , 24, 43-50	2.3	31	
291	Electron microscopy studies of vanadium phosphorus oxide catalysts derived from VOPO4DH2O. <i>Catalysis Letters</i> , 1995 , 33, 357-368	2.8	31	
290	Increased Affinity of Small Gold Particles for Glycerol Oxidation over Au/TiO2 Probed by NMR Relaxation Methods. <i>ACS Catalysis</i> , 2017 , 7, 4235-4241	13.1	30	
289	Microwave synthesis of ZnIn2S4/WS2 composites for photocatalytic hydrogen production and hexavalent chromium reduction. <i>Catalysis Science and Technology</i> , 2019 , 9, 5698-5711	5.5	30	
288	The Direct Synthesis of H2O2 Using TS-1 Supported Catalysts. <i>ChemCatChem</i> , 2019 , 11, 1673-1680	5.2	30	
287	Isolated Pd Sites as Selective Catalysts for Electrochemical and Direct Hydrogen Peroxide Synthesis. <i>ACS Catalysis</i> , 2020 , 10, 5928-5938	13.1	30	
286	The decomposition of H 2 O 2 over the components of Au/TiO 2 Latalysts. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2011 , 467, 1885-1899	2.4	30	

285	Enhanced photocatalytic degradation of organic pollutants and hydrogen production by a visible lightflesponsive Bi2WO6/ZnIn2S4 heterojunction. <i>Applied Surface Science</i> , 2021 , 544, 148885	6.7	30
284	Ruthenium Triazine Composite: A Good Match for Increasing Hydrogen Evolution Activity through Contact Electrification. <i>Advanced Energy Materials</i> , 2020 , 10, 2000067	21.8	29
283	Cinnamaldehyde hydrogenation using Au P d catalysts prepared by sol immobilisation. <i>Catalysis Science and Technology</i> , 2018 , 8, 1677-1685	5.5	29
282	The Selective Oxidation of 1,2-Propanediol by Supported Gold-Based Nanoparticulate Catalysts. <i>Topics in Catalysis</i> , 2012 , 55, 1283-1288	2.3	29
281	Calculations on the adsorption of Au to MgO surfaces using SIESTA. <i>Journal of Materials Chemistry</i> , 2006 , 16, 1978		29
280	Ab initio simulation of the interaction of hydrogen with the {111} surfaces of platinum, palladium and nickel. A possible explanation for their difference in hydrogenation activity. <i>Chemical Communications</i> , 2000 , 705-706	5.8	29
279	Oxidation of cinnamyl alcohol using bimetallic AuPd/TiO2 catalysts: a deactivation study in a continuous flow packed bed microreactor. <i>Catalysis Science and Technology</i> , 2016 , 6, 4749-4758	5.5	29
278	Enhanced Au?Pd Activity in the Direct Synthesis of Hydrogen Peroxide using Nanostructured Titanate Nanotube Supports. <i>ChemCatChem</i> , 2014 , 6, 2531-2534	5.2	28
277	Oxidative esterification of 1,2-propanediol using gold and gold-palladium supported nanoparticles. <i>Catalysis Science and Technology</i> , 2012 , 2, 97-104	5.5	28
276	Understanding the effect of thermal treatments on the structure of CuAu/SiO2 catalysts and their performance in propene oxidation. <i>Catalysis Science and Technology</i> , 2011 , 1, 76	5.5	28
275	Evidence for the reversible formation of a catalytic active site for propane aromatization for Ga2O3/H-ZSM-5. <i>Catalysis Letters</i> , 1994 , 27, 361-367	2.8	28
274	Hydrocarbon formation from methanol and dimethyl ether using WO3/Al2O3 and H-ZSM-5 catalysts. A mechanistic investigation using model reagents. <i>Journal of the Chemical Society Faraday Transactions I</i> , 1988 , 84, 1311		28
273	The conversion of levulinic acid into Evalerolactone using CullrO2 catalysts. <i>Catalysis Science and Technology</i> , 2016 , 6, 6022-6030	5.5	28
272	Solvent Free Synthesis of PdZn/TiO Catalysts for the Hydrogenation of CO to Methanol. <i>Topics in Catalysis</i> , 2018 , 61, 144-153	2.3	27
271	The effect of grafting zirconia and ceria onto alumina as a support for silicotungstic acid for the catalytic dehydration of glycerol to acrolein. <i>Chemistry - A European Journal</i> , 2014 , 20, 1743-52	4.8	27
270	Deactivation studies of a carbon supported AuPt nanoparticulate catalyst in the liquid-phase aerobic oxidation of 1,2-propanediol. <i>Catalysis Science and Technology</i> , 2014 , 4, 1313-1322	5.5	27
269	Nanocrystalline gold catalysts: A reflection on catalyst discovery and the nature of active sites 2009 , 42, 260-266		27
268	Oxidative dehydrogenation of cyclohexane and cyclohexene over supported gold, palladium and goldpalladium catalysts. <i>Catalysis Today</i> , 2010 , 154, 2-6	5.3	27

(2012-2015)

267	Direct synthesis of hydrogen peroxide using Aul a supported and ion-exchanged heteropolyacids precipitated with various metal ions. <i>Catalysis Today</i> , 2015 , 248, 10-17	5.3	26
266	Novel cobalt zinc oxide Fischer Tropsch catalysts synthesised using supercritical anti-solvent precipitation. <i>Catalysis Science and Technology</i> , 2014 , 4, 1970-1978	5.5	26
265	Low Temperature Hydrolysis of Carbonyl Sulfide Using FAlumina Catalysts. <i>Catalysis Letters</i> , 2001 , 74, 111-114	2.8	26
264	Enhanced Selective Oxidation of Benzyl Alcohol via In Situ H2O2 Production over Supported Pd-Based Catalysts. <i>ACS Catalysis</i> , 2021 , 11, 2701-2714	13.1	26
263	Catalytic Partial Oxidation of Cyclohexane by Bimetallic Ag/Pd Nanoparticles on Magnesium Oxide. <i>Chemistry - A European Journal</i> , 2017 , 23, 11834-11842	4.8	25
262	Addressing stability challenges of using bimetallic electrocatalysts: the case of goldpalladium nanoalloys. <i>Catalysis Science and Technology</i> , 2017 , 7, 1848-1856	5.5	25
261	A new class of Cu/ZnO catalysts derived from zincian georgeite precursors prepared by co-precipitation. <i>Chemical Science</i> , 2017 , 8, 2436-2447	9.4	25
260	Co3O4 morphology in the preferential oxidation of CO. Catalysis Science and Technology, 2017, 7, 4806-	-4897	25
259	Selective oxidation of n-butanol using gold-palladium supported nanoparticles under base-free conditions. <i>ChemSusChem</i> , 2015 , 8, 473-80	8.3	25
258	Preparation of a highly active ternary Cu-Zn-Al oxide methanol synthesis catalyst by supercritical CO2 anti-solvent precipitation. <i>Catalysis Today</i> , 2018 , 317, 12-20	5.3	25
257	Selective oxidation of alkenes using graphite-supported gold-palladium catalysts. <i>Catalysis Science and Technology</i> , 2011 , 1, 747	5.5	25
256	Dependence of n-Butane Activation on Active Site of Vanadium Phosphate Catalysts. <i>Catalysis Letters</i> , 2009 , 130, 327-334	2.8	25
255	Catalytic Asymmetric Heterogeneous Aziridination Using CuHY/bis(oxazoline): Effect of Reaction Conditions on Enantioselectivity. <i>Topics in Catalysis</i> , 2003 , 25, 81-88	2.3	25
254	Palladium electrodissolution from model surfaces and nanoparticles. <i>Electrochimica Acta</i> , 2017 , 229, 467-477	6.7	24
253	Synthesis of highly uniform and composition-controlled gold-palladium supported nanoparticles in continuous flow. <i>Nanoscale</i> , 2019 , 11, 8247-8259	7.7	24
252	Enhanced visible-light-driven photocatalytic H2 production and Cr(VI) reduction of a ZnIn2S4/MoS2 heterojunction synthesized by the biomolecule-assisted microwave heating method. <i>Catalysis Science and Technology</i> , 2020 , 10, 2838-2854	5.5	24
251	One-Step Production of 1,3-Butadiene from 2,3-Butanediol Dehydration. <i>Chemistry - A European Journal</i> , 2016 , 22, 12290-4	4.8	24
250	Methane oxidation using silica-supported N-bridged di-iron phthalocyanine catalyst. <i>Journal of Catalysis</i> , 2012 , 290, 177-185	7.3	24

249	Systematic Study of the Oxidation of Methane Using Supported Gold Palladium Nanoparticles Under Mild Aqueous Conditions. <i>Topics in Catalysis</i> , 2013 , 56, 1843-1857	2.3	24
248	Mgo Catalysed Triglyceride Transesterification for Biodiesel Synthesis. <i>Catalysis Letters</i> , 2010 , 138, 1-7	2.8	24
247	Copper Manganese Oxide Catalysts Modified by Gold Deposition: The Influence on Activity for Ambient Temperature Carbon Monoxide Oxidation. <i>Catalysis Letters</i> , 2010 , 138, 143-147	2.8	24
246	Low temperature selective oxidation of methane using gold-palladium colloids. <i>Catalysis Today</i> , 2020 , 342, 32-38	5.3	24
245	High activity redox catalysts synthesized by chemical vapor impregnation. ACS Nano, 2014, 8, 957-69	16.7	23
244	Direct Synthesis of Hydrogen Peroxide Using Ruthenium Catalysts. <i>Topics in Catalysis</i> , 2012 , 55, 718-727	2 2.3	23
243	Controlling vanadium phosphate catalyst precursor morphology by adding alkane solvents in the reduction step of VOPO4[2]H2O to VOHPO4[0].5H2O. <i>Journal of Materials Chemistry</i> , 2011 , 21, 16136		23
242	High temperature COS hydrolysis catalysed by EAl2O3. <i>Catalysis Letters</i> , 2006 , 110, 243-246	2.8	23
241	A Kinetic Study of Methane Partial Oxidation over Fe-ZSM-5 Using N O as an Oxidant. <i>ChemPhysChem</i> , 2018 , 19, 402-411	3.2	22
240	Direct synthesis of hydrogen peroxide in water at ambient temperature. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2016 , 472, 20160156	2.4	22
239	Initiator-free hydrocarbon oxidation using supported gold nanoparticles. <i>Catalysis Science and Technology</i> , 2014 , 4, 908-911	5.5	22
238	Solid Acid Additives as Recoverable Promoters for the Direct Synthesis of Hydrogen Peroxide. <i>Industrial & Direct Synthesis of Hydrogen Peroxide</i> . <i>Industrial & Direct Synthesis of Hydrogen Peroxide</i> .	3.9	22
237	Low temperature catalytic partial oxidation of ethane to oxygenates by Felland CullSM-5 in a continuous flow reactor. <i>Journal of Catalysis</i> , 2015 , 330, 84-92	7.3	21
236	The Role of Mg(OH) in the So-Called "Base-Free" Oxidation of Glycerol with AuPd Catalysts. <i>Chemistry - A European Journal</i> , 2018 , 24, 2396-2402	4.8	21
235	An Investigation of the Effect of the Addition of Tin to 5 %Pd/TiO2 for the Hydrogenation of Furfuryl Alcohol. <i>ChemCatChem</i> , 2015 , 7, 2122-2129	5.2	21
234	Influence of reaction conditions on the direct synthesis of hydrogen peroxide over AuPd/carbon catalysts. <i>Catalysis Science and Technology</i> , 2012 , 2, 1908	5.5	21
233	Nanocrystalline gold and goldpalladium as effective catalysts for selective oxidation. <i>Journal of Materials Research</i> , 2007 , 22, 831-837	2.5	21
232	Designing Oxidation Catalysts: Are We Getting Better?. <i>Cattech</i> , 2003 , 7, 90-103		21

(2001-2003)

231	Observation of high enantioselectivity for the gas phase hydrogenation of methyl pyruvate using supported Pt catalysts pre-modified with cinchonidine. <i>Chemical Communications</i> , 2003 , 1926	5.8	21
230	Aldol condensation reactions of acetone and formaldehyde over vanadium phosphate catalysts: Comments on the acidBase properties. <i>Physical Chemistry Chemical Physics</i> , 2002 , 4, 688-695	3.6	21
229	Oxidation of pinene to verbenone using silicalitania co-gel catalyst. <i>Catalysis Letters</i> , 2000 , 67, 203-206	5 2.8	20
228	CO hydrogenation using cobalt/manganese oxide catalysts. Comments on the mechanism of carbonBarbon bond formation. <i>Journal of the Chemical Society Faraday Transactions I</i> , 1989 , 85, 2875		20
227	An Overview of Recent Advances of the Catalytic Selective Oxidation of Ethane to Oxygenates. <i>Catalysts</i> , 2016 , 6, 71	4	20
226	Glycerol Oxidation Using MgO- and Al2O3-supported Gold and GoldPalladium Nanoparticles Prepared in the Absence of Polymer Stabilizers. <i>ChemCatChem</i> , 2018 , 10, 1351-1359	5.2	19
225	Investigating the influence of acid sites in continuous methane oxidation with N2O over Fe/MFI zeolites. <i>Catalysis Science and Technology</i> , 2018 , 8, 154-163	5.5	19
224	Ambient Temperature Hydrolysis of Carbonyl Sulfide Using EAlumina Catalysts: Effect of Calcination Temperature and Alkali Doping. <i>Catalysis Letters</i> , 2003 , 86, 201-205	2.8	19
223	The direct synthesis of hydrogen peroxide from H2 and O2 using Pdta and Pdth catalysts. <i>Catalysis Science and Technology</i> , 2020 , 10, 1925-1932	5.5	18
222	Insights into the Reaction Mechanism of Cyclohexane Oxidation Catalysed by Molybdenum Blue Nanorings. <i>Catalysis Letters</i> , 2016 , 146, 126-135	2.8	18
221	The direct synthesis of hydrogen peroxide using platinum promoted goldpalladium catalysts. <i>Catalysis Science and Technology</i> , 2014 , 4, 3244-3250	5.5	18
220	The effect of ring size on the selective oxidation of cycloalkenes using supported metal catalysts. <i>Catalysis Science and Technology</i> , 2013 , 3, 1531	5.5	18
219	Preparation of Fischer Tropsch Supported Cobalt Catalysts Using a New Gas Anti-Solvent Process. <i>ACS Catalysis</i> , 2013 , 3, 764-772	13.1	18
218	Low-temperature aerobic oxidation of decane using an oxygen-free radical initiator. <i>Journal of Catalysis</i> , 2011 , 283, 161-167	7.3	18
217	Co-precipitated Copper Zinc Oxide Catalysts for Ambient Temperature Carbon Monoxide Oxidation: Effect of Precipitate Aging Atmosphere on Catalyst Activity. <i>Catalysis Letters</i> , 2003 , 87, 103-	1 0 8	18
216	High temperature preparation of vanadium phosphate catalysts using water as solvent. <i>Physical Chemistry Chemical Physics</i> , 2003 , 5, 3525-3533	3.6	18
215	Unexpected Inversion in Enantioselectivity in the Hydrogenation N-acetyl Dehydrophenylalanine Methyl Ester using Cinchona-Modified Pd/Al2O3 catalyst. <i>Catalysis Letters</i> , 2005 , 103, 117-120	2.8	18
214	Decreased methane formation from the hydrogenation of carbon monoxide using zeolite/cobalt-manganese oxide composite catalysts. <i>Chemical Communications</i> , 2001 , 2454-5	5.8	18

213	Methane Oxidation to Methanol in Water. Accounts of Chemical Research, 2021, 54, 2614-2623	24.3	18
212	Highly selective PdZn/ZnO catalysts for the methanol steam reforming reaction. <i>Catalysis Science and Technology</i> , 2018 , 8, 5848-5857	5.5	18
211	Recent Advances in the Gold-Catalysed Low-Temperature Water as Shift Reaction. <i>Catalysts</i> , 2018 , 8, 627	4	18
210	Depressing the hydrogenation and decomposition reaction in H2O2 synthesis by supporting AuPd on oxygen functionalized carbon nanofibers. <i>Catalysis Science and Technology</i> , 2016 , 6, 694-697	5.5	17
209	Selective deposition of palladium onto supported nickel Dimetallic catalysts for the hydrogenation of crotonaldehyde. <i>Catalysis Science and Technology</i> , 2013 , 3, 2746	5.5	17
208	Oxidation of Aliphatic Alcohols by Using Precious Metals Supported on Hydrotalcite under Solventand Base-Free Conditions. <i>ChemSusChem</i> , 2015 , 8, 3314-22	8.3	17
207	Direct synthesis of hydrogen peroxide using ceria-supported gold and palladium catalysts. <i>Catalysis Today</i> , 2011 , 178, 47-50	5.3	17
206	COS Hydrolysis Using Zinc-promoted Alumina Catalysts. <i>Catalysis Letters</i> , 2005 , 104, 17-21	2.8	17
205	The Direct Synthesis of H2O2 and Selective Oxidation of Methane to Methanol Using HZSM-5 Supported AuPd Catalysts. <i>Catalysis Letters</i> , 2019 , 149, 3066-3075	2.8	16
204	Benzyl alcohol oxidation with Pd-Zn/TiO: computational and experimental studies. <i>Science and Technology of Advanced Materials</i> , 2019 , 20, 367-378	7.1	16
203	Oxidation of Benzyl Alcohol using in Situ Generated Hydrogen Peroxide. <i>Organic Process Research and Development</i> , 2014 , 18, 1455-1460	3.9	16
202	Catalytic synthesis of methanethiol from CO/H2/H2S mixtures using FAl2O3. <i>New Journal of Chemistry</i> , 2004 , 28, 471-476	3.6	16
201	Vanadium(V) phosphate prepared using solvent-free method. <i>Catalysis Letters</i> , 2001 , 72, 99-105	2.8	16
200	Supercritical Antisolvent Precipitation of Amorphous Copper-Zinc Georgeite and Acetate Precursors for the Preparation of Ambient-Pressure Water-Gas-Shift Copper/Zinc Oxide Catalysts. <i>ChemCatChem</i> , 2017 , 9, 1621-1631	5.2	15
199	The Effects of Secondary Oxides on Copper-Based Catalysts for Green Methanol Synthesis. <i>ChemCatChem</i> , 2017 , 9, 1655-1662	5.2	15
198	Molybdenum blue nano-rings: an effective catalyst for the partial oxidation of cyclohexane. <i>Catalysis Science and Technology</i> , 2015 , 5, 217-227	5.5	15
197	Enhanced catalyst selectivity in the direct synthesis of H2O2 through Pt incorporation into TiO2 supported AuPd catalysts. <i>Catalysis Science and Technology</i> , 2020 , 10, 4635-4644	5.5	15
196	Product Inhibition in Glycerol Oxidation over Au/TiO2 Catalysts Quantified by NMR Relaxation. <i>ACS Catalysis</i> , 2018 , 8, 7334-7339	13.1	15

195	Oxidative Esterification of Homologous 1,3-Propanediols. <i>Catalysis Letters</i> , 2012 , 142, 1114-1120	2.8	15
194	Solvent-free Liquid-phase Oxidation of 1-Hexene using Supported Gold Catalysts. <i>ChemCatChem</i> , 2012 , 4, 1565-1571	5.2	15
193	Biotemplated synthesis of catalytic Au B d nanoparticles. <i>RSC Advances</i> , 2012 , 2, 2217	3.7	15
192	Effects of cobalt additive on amorphous vanadium phosphate catalysts prepared using precipitation with supercritical CO2 as an antisolvent. <i>New Journal of Chemistry</i> , 2002 , 26, 1811-1816	3.6	15
191	Aldol condensation reactions of acetone over alkali-modified vanadium phosphate catalysts. <i>Physical Chemistry Chemical Physics</i> , 2002 , 4, 4555-4560	3.6	15
190	Hydrocarbon formation from methylating agents over the zeolite catalyst H-ZSM-5 and its conjugate base: evidence against the trimethyloxonium ionylide mechanism. <i>Journal of the Chemical Society Chemical Communications</i> , 1985 , 1643-1645		15
189	Au-ZSM-5 catalyses the selective oxidation of CH4 to CH3OH and CH3COOH using O2. <i>Nature Catalysis</i> ,	36.5	15
188	Highly Active Gold and Gold P alladium Catalysts Prepared by Colloidal Methods in the Absence of Polymer Stabilizers. <i>ChemCatChem</i> , 2017 , 9, 2914-2918	5.2	14
187	Optimised photocatalytic hydrogen production using core-shell AuPd promoters with controlled shell thickness. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 26638-44	3.6	14
186	Synthesis and Characterization of Vanadyl Hydrogen Phosphite Hydrate. <i>Chemistry of Materials</i> , 2005 , 17, 2757-2764	9.6	14
185	Methanol to Hydrocarbons: Enhanced Aromatic Formation Using Composite Group 13 Oxide/H-ZSM-5 Catalysts. <i>Catalysis Letters</i> , 2002 , 82, 217-225	2.8	14
184	K-edge X-ray absorption spectroscopy of the ligand environment of single-site Au/C catalysts during acetylene hydrochlorination. <i>Chemical Science</i> , 2020 , 11, 7040-7052	9.4	13
183	Tuning graphitic oxide for initiator- and metal-free aerobic epoxidation of linear alkenes. <i>Nature Communications</i> , 2016 , 7, 12855	17.4	13
182	Investigating the Influence of Fe Speciation on NO Decomposition Over Fe-ZSM-5 Catalysts. <i>Topics in Catalysis</i> , 2018 , 61, 1983-1992	2.3	13
181	MacroporousThesoporous carbon supported Ni catalysts for the conversion of cellulose to polyols. <i>Green Chemistry</i> , 2018 , 20, 3634-3642	10	13
180	Cinnamyl alcohol oxidation using supported bimetallic Au P d nanoparticles: an investigation of autoxidation and catalysis. <i>Catalysis Science and Technology</i> , 2018 , 8, 2987-2997	5.5	13
179	Enantioselective Hydrogenation Using Cinchona-Modified Pt/EAl2O3 Catalysts: Comparison of the Reaction of Ethyl Pyruvate and Buta-2,3-dione. <i>Catalysis Letters</i> , 2004 , 96, 147-151	2.8	13
178	Effect of Base on the Facile Hydrothermal Preparation of Highly Active IrOx Oxygen Evolution Catalysts. <i>ACS Applied Energy Materials</i> , 2020 , 3, 800-809	6.1	13

177	Preparation of Solid Solution and Layered IrOxNi(OH)2 Oxygen Evolution Catalysts: Toward Optimizing Iridium Efficiency for OER. <i>ACS Catalysis</i> , 2020 , 10, 14640-14648	13.1	13
176	GoldBalladium colloids as catalysts for hydrogen peroxide synthesis, degradation and methane oxidation: effect of the PVP stabiliser. <i>Catalysis Science and Technology</i> , 2020 , 10, 5935-5944	5.5	13
175	A residue-free approach to water disinfection using catalytic in situ generation of reactive oxygen species. <i>Nature Catalysis</i> ,	36.5	13
174	Quantitative Determination of Pt- Catalyzed d-Glucose Oxidation Products Using 2D NMR. <i>ACS Catalysis</i> , 2019 , 9, 325-335	13.1	13
173	Supported Bimetallic AuPd Nanoparticles as a Catalyst for the Selective Hydrogenation of Nitroarenes. <i>Nanomaterials</i> , 2018 , 8,	5.4	13
172	An investigation into bimetallic catalysts for base free oxidation of cellobiose and glucose. <i>Journal of Chemical Technology and Biotechnology</i> , 2017 , 92, 2246-2253	3.5	12
171	The use of carbon monoxide as a probe molecule in spectroscopic studies for determination of exposed gold sites on TiO2. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 23236-44	3.6	12
170	A micropacked-bed multi-reactor system with in situ raman analysis for catalyst evaluation. <i>Catalysis Today</i> , 2017 , 283, 195-201	5.3	12
169	Involvement of Surface-Bound Radicals in the Oxidation of Toluene Using Supported Au-Pd Nanoparticles. <i>Angewandte Chemie</i> , 2012 , 124, 6083-6087	3.6	12
168	Preparation of Tio2 Using Supercritical CO2 Antisolvent Precipitation (SAS): A Support for High Activity Gold Catalysts. <i>Studies in Surface Science and Catalysis</i> , 2006 , 162, 219-226	1.8	12
167	Synthesis of Vanadium Phosphate Catalysts by Hydrothermal Method for Selective Oxidation of n-butane to Maleic Anhydride. <i>Catalysis Letters</i> , 2006 , 106, 177-181	2.8	12
166	The effect of water on the enantioselective hydrogenation of ethyl pyruvate and butane-2,3-dione using cinchona-modified Pt/Al2O3. <i>Physical Chemistry Chemical Physics</i> , 2002 , 4, 2839-2845	3.6	12
165	Structure-sensitivity of alumina supported palladium catalysts for N2O decomposition. <i>Applied Catalysis B: Environmental</i> , 2020 , 264, 118501	21.8	12
164	The Effects of Dopants on the Cu🏿rO2 Catalyzed Hydrogenation of Levulinic Acid. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 7879-7888	3.8	12
163	How to Synthesise High Purity, Crystalline d-Glucaric Acid Selectively. <i>European Journal of Organic Chemistry</i> , 2017 , 2017, 6811-6814	3.2	11
162	Solvent-Free Aerobic Epoxidation of Dec-1-ene Using Gold/Graphite as a Catalyst. <i>Catalysis Letters</i> , 2015 , 145, 689-696	2.8	11
161	The Direct Synthesis of Hydrogen Peroxide Using Platinum-Promoted Gold P alladium Catalysts. <i>Angewandte Chemie</i> , 2014 , 126, 2413-2416	3.6	11
160	Tungstate promoted vanadium phosphate catalysts for the gas phase oxidation of methanol to formaldehyde. <i>Catalysis Science and Technology</i> , 2013 , 3, 1558	5.5	11

159	The Low-Temperature Oxidation of Propane by using H2O2 and Fe/ZSM-5 Catalysts: Insights into the Active Site and Enhancement of Catalytic Turnover Frequencies. <i>ChemCatChem</i> , 2017 , 9, 642-650	5.2	11
158	Catalyst Synthesis Using Supercritical Carbon Dioxide: A Green Route to High Activity Materials. <i>Topics in Catalysis</i> , 2009 , 52, 982-987	2.3	11
157	Aromatization of Isobutene Using H-ZSM-5/Oxide Composite Catalysts. <i>Catalysis Letters</i> , 2010 , 134, 191	1 <i>-</i> 1.9 5	11
156	Selective formation of chloroethane by the hydrochlorination of ethene using zinc catalysts. <i>Journal of Catalysis</i> , 2007 , 252, 23-29	7.3	11
155	Water as a Promoter of the Complete Oxidation of Volatile Organic Compounds over Uranium Oxide Catalysts. <i>Catalysis Letters</i> , 2002 , 78, 369-372	2.8	11
154	Effects of C5-heterocyclic compounds on CO adsorption and crotonaldehyde hydrogenation over supported Cu and Co catalysts. <i>Physical Chemistry Chemical Physics</i> , 2000 , 2, 283-290	3.6	11
153	Au-Pd Separation Enhances Bimetallic Catalysis of Alcohol Oxidation Nature, 2022,	50.4	11
152	Sustainable production of glucaric acid from corn stover via glucose oxidation: An assessment of homogeneous and heterogeneous catalytic oxidation production routes. <i>Chemical Engineering Research and Design</i> , 2020 , 153, 337-349	5.5	11
151	The direct synthesis of hydrogen peroxide from H and O using Pd-Ni/TiO catalysts. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2020 , 378, 20200062	3	11
150	Direct Synthesis of Hydrogen Peroxide Using Cs-Containing Heteropolyacid-Supported Palladium Lopper Catalysts. <i>Catalysis Letters</i> , 2019 , 149, 998-1006	2.8	11
149	Lowering the Operating Temperature of Perovskite Catalysts for N2O Decomposition through Control of Preparation Methods. <i>ACS Catalysis</i> , 2020 , 10, 5430-5442	13.1	11
148	Oxidative Degradation of Phenol using in situ Generated Hydrogen Peroxide Combined with Fenton Process. <i>Johnson Matthey Technology Review</i> , 2018 , 62, 417-425	2.5	11
147	The effect of T-atom ratio and TPAOH concentration on the pore structure and titanium position in MFI-Type titanosilicate during dissolution-recrystallization process. <i>Microporous and Mesoporous Materials</i> , 2020 , 305, 110397	5.3	10
146	Homocoupling of Phenylboronic Acid using Atomically Dispersed Gold on Carbon Catalysts: Catalyst Evolution Before Reaction. <i>ChemCatChem</i> , 2018 , 10, 1853-1859	5.2	10
145	Catalysis using colloidal-supported gold-based nanoparticles. <i>Applied Petrochemical Research</i> , 2014 , 4, 85-94	1.9	10
144	Control of the selectivity in multi-functional group molecules using supported goldpalladium nanoparticles. <i>Green Chemistry</i> , 2013 , 15, 1244	10	10
143	Influence of Milling Media on the Physicochemicals and Catalytic Properties of Mechanochemical Treated Vanadium Phosphate Catalysts. <i>Catalysis Letters</i> , 2011 , 141, 400-407	2.8	10
142	Influence of Methyl Halide Treatment on Gold Nanoparticles Supported on Activated Carbon. Angewandte Chemie, 2011 , 123, 9074-9078	3.6	10

141	Low-pressure methanol/ dimethylether synthesis from syngas on gold-based catalysts 2007 , 40, 219-2	24	10
140	Gallium-doped VPO catalysts for the oxidation of n-butane to maleic anhydride. <i>Journal of Materials Chemistry</i> , 2006 , 16, 4348		10
139	Synthesis of Methyl Mercaptan and Thiophene from CO/H2/H2S Using ⊞Al2O3. <i>Catalysis Letters</i> , 2003 , 91, 181-183	2.8	10
138	Oxidation of Hydroxy containing monoterpenes using titanium silicate catalysts: comments on regioselectivity and the role of acidity. <i>Perkin Transactions II RSC</i> , 2002 , 1475		10
137	n-butane oxidation to maleic anhydride: effect of Co and Fe addition by the method of incipient wetness on vanadium phosphate catalysts prepared by the aqueous HC1 method. <i>Catalysis Letters</i> , 1996 , 38, 231-237	2.8	10
136	Direct and oxidative dehydrogenation of propane: from catalyst design to industrial application. <i>Green Chemistry</i> ,	10	10
135	The Low Temperature Solvent-Free Aerobic Oxidation of Cyclohexene to Cyclohexane Diol over Highly Active Au/Graphite and Au/Graphene Catalysts. <i>Catalysts</i> , 2018 , 8, 311	4	10
134	Multifunctional supported bimetallic catalysts for a cascade reaction with hydrogen auto transfer: synthesis of 4-phenylbutan-2-ones from 4-methoxybenzyl alcohols. <i>Catalysis Science and Technology</i> , 2017 , 7, 1928-1936	5.5	9
133	Investigating the Influence of Reaction Conditions and the Properties of Ceria for the Valorisation of Glycerol. <i>Energies</i> , 2019 , 12, 1359	3.1	9
132	Inhibiting the Dealkylation of Basic Arenes during n-Alkane Direct Aromatization Reactions and Understanding the C6 Ring Closure Mechanism. <i>ACS Catalysis</i> , 2020 , 10, 8428-8443	13.1	9
131	Promotion Mechanisms of Au Supported on TiO2 in Thermal- and Photocatalytic Glycerol Conversion. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 19734-19741	3.8	9
130	Physical mixing of metal acetates: optimisation of catalyst parameters to produce highly active bimetallic catalysts. <i>Catalysis Science and Technology</i> , 2013 , 3, 2910	5.5	9
129	Towards heterogeneous organocatalysis: chiral iminium cations supported on porous materials for enantioselective alkene epoxidation. <i>Catalysis Science and Technology</i> , 2013 , 3, 2330	5.5	9
128	Reaction of vanadium phosphates with alcohols at elevated temperature and pressure. <i>Journal of Materials Chemistry</i> , 2005 , 15, 3214		9
127	Continuous stable enantioselective hydrogenation of alkyl pyruvate esters using pre-modified cinchonidine platinum catalysts. <i>Catalysis Letters</i> , 2005 , 100, 255-258	2.8	9
126	High Surface Area MgO as a Highly Effective Heterogeneous Base Catalyst for Michael Addition and Knoevenagel Condensation Reactions. <i>Synthesis</i> , 2005 , 2005, 3468-3476	2.9	9
125	Effect of Dehydration of VOPO4?2H2O on the Preparation and Reactivity of Vanadium Phosphate Catalyst for the Oxidation of n-Butane. <i>Catalysis Letters</i> , 2001 , 77, 189-192	2.8	9
124	A New Class of Uranium Oxide Based Catalysts for the Oxidative Destruction of Benzene and Butane Volatile Organic Compounds. <i>ACS Symposium Series</i> , 1996 , 58-75	0.4	9

(2021-2020)

123	Continuous Flow Synthesis of Bimetallic AuPd Catalysts for the Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid. <i>ChemNanoMat</i> , 2020 , 6, 420-426	3.5	9
122	The partial oxidation of propane under mild aqueous conditions with H2O2 and ZSM-5 catalysts. <i>Catalysis Science and Technology</i> , 2016 , 6, 7521-7531	5.5	9
121	The Influence of Reaction Conditions on the Oxidation of Cyclohexane via the In-Situ Production of H2O2. <i>Catalysis Letters</i> , 2021 , 151, 164-171	2.8	9
120	The Role of Copper Speciation in the Low Temperature Oxidative Upgrading of Short Chain Alkanes over Cu/ZSM-5 Catalysts. <i>ChemPhysChem</i> , 2018 , 19, 469-478	3.2	9
119	Low Temperature Direct Conversion of Methane using a Solid Superacid. ChemCatChem, 2018, 10, 5019	-5024	9
118	Oxygenate formation over K/EMo2C catalysts in the Fischer Tropsch synthesis. <i>Catalysis Science and Technology</i> , 2018 , 8, 3806-3817	5.5	9
117	Enhanced Activity and Stability of Gold/Ceria-Titania for the Low-Temperature Water-Gas Shift Reaction. <i>Frontiers in Chemistry</i> , 2019 , 7, 443	5	8
116	Seed- and solvent-free synthesis of ZSM-5 with tuneable Si/Al ratios for biomass hydrogenation. <i>Green Chemistry</i> , 2020 , 22, 1630-1638	10	8
115	Oxidative Carboxylation of 1-Decene to 1,2-Decylene Carbonate. <i>Topics in Catalysis</i> , 2018 , 61, 509-518	2.3	8
114	Well-controlled metal co-catalysts synthesised by chemical vapour impregnation for photocatalytic hydrogen production and water purification. <i>Dalton Transactions</i> , 2014 , 43, 14976-82	4.3	8
113	Au Catalysts for Acetylene Hydrochlorination and Carbon Monoxide Oxidation. <i>Topics in Catalysis</i> , 2014 , 57, 1265-1271	2.3	8
112	Effect on the structure and morphology of vanadium phosphates of the addition of alkanes during the alcohol reduction of VOPO4l2H2O. <i>Journal of Materials Chemistry</i> , 2010 , 20, 5310		8
111	Recovery and reuse of nanoparticles by tuning solvent quality. ChemSusChem, 2010, 3, 339-41	8.3	8
110	Unexpected inversion of enantioselectivity during the hydrogenation of ethyl pyruvate using hydroquinine and hydroquinidine modified Pt/Al2O3. <i>Catalysis Letters</i> , 2006 , 110, 135-138	2.8	8
109	Heterogeneous Enantioselective Catalyzed Carbonyl- and Imino-Ene Reactions using Copper Bis(Oxazoline) Zeolite Y. <i>Angewandte Chemie</i> , 2004 , 116, 1717-1720	3.6	8
108	Comments on: Evidence for the reversible formation of a catalytic active site for propane aromatization for Ga2O3/H- ZSM-5. A response. <i>Catalysis Letters</i> , 1995 , 32, 237-239	2.8	8
107	Creating chiral centres in zeolite Y by the introduction of R-1,3-dithiane 1-oxide as a modifier: Computer simulation of the modifier stability. <i>Topics in Catalysis</i> , 1996 , 3, 77-89	2.3	8
106	A Perspective on Heterogeneous Catalysts for the Selective Oxidation of Alcohols. <i>Chemistry - A European Journal</i> , 2021 , 27, 16809-16833	4.8	8

105	Highly crystalline vanadium phosphate catalysts synthesized using poly(acrylic acid-co-maleic acid) as a structure directing agent. <i>Catalysis Science and Technology</i> , 2016 , 6, 2910-2917		7
104	Deactivation Behavior of Supported Gold Palladium Nanoalloy Catalysts during the Selective Oxidation of Benzyl Alcohol in a Micropacked Bed Reactor. <i>Industrial & Discourse in the Selective and Selective areas in the Selective and Selective areas in the Selective and Selective areas in the Selective areas are areas are areas are areas are areas are areas are areas areas are areas areas are areas areas are areas are areas areas are areas are areas are areas are areas are areas are </i>		7
103	New insights for the valorisation of glycerol over MgO catalysts in the gas-phase. <i>Catalysis Science and Technology</i> , 2019 , 9, 1464-1475	•	7
102	Enhancing the understanding of the glycerol to lactic acid reaction mechanism over AuPt/TiO under alkaline conditions. <i>Journal of Chemical Physics</i> , 2020 , 152, 134705	,	7
101	Gold catalysis: helping create a sustainable future. <i>Applied Petrochemical Research</i> , 2012 , 2, 7-14)	7
100	Purification of chemical feedstocks by the removal of aerial carbonyl sulfide by hydrolysis using rare earth promoted alumina catalysts. <i>Green Chemistry</i> , 2008 , 10, 571		7
99	The hydration and transformation of vanadyl pyrophosphate. <i>Journal of Materials Chemistry</i> , 2005 , 15, 4147		7
98	Shape selective oxidation using titanium silicates: epoxidation of dihydromyrcene and the model compounds 2-methylpent-2-ene and 3-methylpent-1-ene. <i>Perkin Transactions II RSC</i> , 2002 , 2064-2071		7
97	Preparation of high surface area vanadium phosphate catalysts using water as solvent. <i>New Journal of Chemistry</i> , 2002 , 26, 1613-1618		7
96	A combined MAS nuclear magnetic resonance spectroscopy, in situ FT infrared spectroscopy and catalytic study of the conversion of allyl alcohol over zeolite catalysts. <i>Catalysis Letters</i> , 1995 , 31, 377-3938		7
95	The Direct Synthesis of Hydrogen Peroxide over AuPd Nanoparticles: An Investigation into Metal Loading. <i>Catalysis Letters</i> ,1	}	7
94	Sulfur Promotion in Au/C Catalyzed Acetylene Hydrochlorination. <i>Small</i> , 2021 , 17, e2007221 11		7
93	Oxidation of Polynuclear Aromatic Hydrocarbons using Ruthenium-Ion-Catalyzed Oxidation: The Role of Aromatic Ring Number in Reaction Kinetics and Product Distribution. <i>Chemistry - A</i> European Journal, 2018 , 24, 655-662	3	7
92	Enhancement in the rate of nitrate degradation on Au- and Ag-decorated TiO2 photocatalysts. Catalysis Science and Technology, 2020 , 10, 2082-2091 5.5		6
91	Selective oxidation of alkyl-substituted polyaromatics using ruthenium-ion-catalyzed oxidation. Chemistry - A European Journal, 2015, 21, 4285-93 4.8	3	6
90	Multi-functionality of Ga/ZSM-5 catalysts during anaerobic and aerobic aromatisation of n-decane. Chemical Science, 2012 , 3, 2958 9.4		6
89	The Effect of Cr, Ni, Fe, and Mn Dopants on the Performance of Hydrothermal Synthesized Vanadium Phosphate Catalysts for n-Butane Oxidation. <i>Petroleum Science and Technology</i> , 2010 , 28, 997 ¹ 16.)12	6
88	Study of Carbon Monoxide Hydrogenation Over Supported Au Catalysts. <i>Studies in Surface Science and Catalysis</i> , 2007 , 163, 141-151		6

(2021-2003)

87	Premodification of Pt/Al2O3 with Cinchonidine for the Enantioselective Hydrogenation of Ethyl Pyruvate: Effect of Premodification Conditions on Reaction Rate and Enantioselection. <i>Catalysis Letters</i> , 2003 , 89, 163-167	2.8	6
86	Selective conversion of allyl alcohol to oxygenates and hydrocarbons using ion exchanged zeolite Y. <i>Catalysis Letters</i> , 1995 , 34, 115-127	2.8	6
85	LiAl(OPri)4 as a model compound for the conjugate base of the zeolite catalyst H-ZSM-5 and its reaction with various methylating agents. <i>Journal of the Chemical Society Chemical Communications</i> , 1985 , 886		6
84	The Effect of Polymer Addition on Base Catalysed Glycerol Oxidation Using Gold and GoldPalladium Bimetallic Catalysts. <i>Topics in Catalysis</i> , 2020 , 63, 394-402	2.3	6
83	CO2 Hydrogenation to CH3OH over PdZn Catalysts, with Reduced CH4 Production. <i>ChemCatChem</i> , 2020 , 12, 6024-6032	5.2	6
82	LanCLs add glutathione to dehydroamino acids generated at phosphorylated sites in the proteome. <i>Cell</i> , 2021 , 184, 2680-2695.e26	56.2	6
81	The Selective Oxidation of Cyclohexane via In-situ H2O2 Production Over Supported Pd-based Catalysts. <i>Catalysis Letters</i> , 2021 , 151, 2762-2774	2.8	6
80	Highly efficient catalytic production of oximes from ketones using in situ-generated HO <i>Science</i> , 2022 , 376, 615-620	33.3	6
79	Adipic acid formation from cyclohexanediol using platinum and vanadium catalysts: elucidating the role of homogeneous vanadium species. <i>Catalysis Science and Technology</i> , 2020 , 10, 4210-4218	5.5	5
78	Ammonia Decomposition Enhancement by Cs-Promoted Fe/Al2O3 Catalysts. <i>Catalysis Letters</i> , 2020 , 150, 3369-3376	2.8	5
77	xNi Cuarro2 catalysts for the hydrogenation of levulinic acid to gamma valorlactone 2018, 4, 12-23		5
76	Hydrochlorination of Acetylene Catalyzed by Gold 2012 , 1-26		5
75	Dealloying shows the way to new catalysts. <i>ChemSusChem</i> , 2010 , 3, 429-30	8.3	5
74	Comments on the use of 2-methylbut-3-yn-2-ol decomposition as a probe reaction for the potential reactivity MgAl hydrotalcites as base catalysts. <i>Catalysis Letters</i> , 2005 , 100, 259-265	2.8	5
73	Dehydration of 2-methylbutanal to isoprene using aluminium phosphate catalysts. <i>Catalysis Letters</i> , 1999 , 61, 219-224	2.8	5
72	Solvent-free aerobic epoxidation of 1-decene using supported cobalt catalysts. <i>Catalysis Today</i> , 2019 , 333, 154-160	5.3	5
71	Plasmonic Oxidation of Glycerol Using Au/TiO2 Catalysts Prepared by Sol-Immobilisation. <i>Catalysis Letters</i> , 2020 , 150, 49-55	2.8	5
70	Ambient base-free glycerol oxidation over bimetallic PdFe/SiO2 by in situ generated active oxygen species. <i>Research on Chemical Intermediates</i> , 2021 , 47, 303-324	2.8	5

69	Activation and Deactivation of Gold/Cerialirconia in the Low-Temperature Waterlas Shift Reaction. <i>Angewandte Chemie</i> , 2017 , 129, 16253-16257	3.6	4
68	Epoxidation of Propene with Graphite AuPd-Supported Nanoparticles. <i>Catalysis Letters</i> , 2015 , 145, 697-	7:08	4
67	The challenges of characterising nanoparticulate catalysts: general discussion. <i>Faraday Discussions</i> , 2018 , 208, 339-394	3.6	4
66	Slurry loop tubular membrane reactor for the catalysed aerobic oxidation of benzyl alcohol. <i>Chemical Engineering Journal</i> , 2019 , 378, 122250	14.7	4
65	Gold-Based Nanoparticulate Catalysts for the Oxidative Esterification of 1,4-Butanediol to Dimethyl Succinate. <i>Topics in Catalysis</i> , 2014 , 57, 723-729	2.3	4
64	Commentary on industrial processes. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2005 , 363, 985-7	3	4
63	Cinnamyl Alcohol Oxidation Using Supported Bimetallic Aulld Nanoparticles: An Optimization of Metal Ratio and Investigation of the Deactivation Mechanism Under Autoxidation Conditions. <i>Topics in Catalysis</i> , 2020 , 63, 99-112	2.3	4
62	Probing the Surface Acidity of Supported Aluminum Bromide Catalysts. <i>Catalysts</i> , 2020 , 10, 869	4	4
61	Coordinately unsaturated O2cIIi5cID2c sites promote the reactivity of Pt/TiO2 catalysts in the solvent-free oxidation of n-octanol. <i>Catalysis Science and Technology</i> , 2021 , 11, 4898-4910	5.5	4
60	Influence of Stabilizers on the Performance of Au/TiO2 Catalysts for CO Oxidation. <i>ACS Catalysis</i> , 2021 , 11, 11607-11615	13.1	4
59	Plasmonic oxidation of glycerol using AuPd/TiO2 catalysts. <i>Catalysis Science and Technology</i> , 2019 , 9, 5686-5691	5.5	3
58	Gas-Phase Deposition of Gold Nanoclusters to Produce Heterogeneous Glycerol Oxidation Catalysts. <i>ACS Applied Nano Materials</i> , 2020 , 3, 4997-5001	5.6	3
57	Probing composition distributions in nanoalloy catalysts with correlative electron microscopy. Journal of Materials Chemistry A, 2020 , 8, 15725-15733	13	3
56	Solvent-free oxidation of dec-1-ene using gold/graphite catalyst using an in situ generated oxidant. <i>Catalysis Science and Technology</i> , 2015 , 5, 1307-1313	5.5	3
55	Supported Metal Nanoparticles in Liquid-Phase Oxidation Reactions 2014 , 631-678		3
54	Cyclic Voltammetry as a Potential Predictive Method for Supported Nanocrystalline Gold Catalysts for Oxidation in Aqueous Media. <i>ACS Symposium Series</i> , 2006 , 82-98	0.4	3
53	Combined Steam Reforming of Methane and Fischer Tropsch Synthesis for the Formation of Hydrocarbons: A Proof of Concept Study. <i>Catalysis Letters</i> , 2003 , 90, 187-194	2.8	3
52	The degradation of phenol via in situ H2O2 production over supported Pd-based catalysts. <i>Catalysis Science and Technology</i> , 2021 , 11, 7866-7874	5.5	3

51	Science to enable the circular economy. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2020 , 378, 20200060	3	3
50	Gas Phase Glycerol Valorization over Ceria Nanostructures with Well-Defined Morphologies. <i>ACS Catalysis</i> , 2021 , 11, 4893-4907	13.1	3
49	Low temperature solvent-free allylic oxidation of cyclohexene using graphitic oxide catalysts. <i>Catalysis Today</i> , 2020 , 357, 3-7	5.3	3
48	Can Gold be an Effective Catalyst for the Deacon Reaction?. <i>Catalysis Letters</i> , 2020 , 150, 2991-2995	2.8	3
47	Spiers Memorial Lecture: Understanding reaction mechanisms in heterogeneously catalysed reactions. <i>Faraday Discussions</i> , 2021 , 229, 9-34	3.6	3
46	Mechanistic Insights into Selective Oxidation of Polyaromatic Compounds using RICO Chemistry. <i>Chemistry - A European Journal</i> , 2018 , 24, 12359-12369	4.8	3
45	Gold as a Catalyst for the Ring Opening of 2,5-Dimethylfuran. Catalysis Letters, 2018, 148, 2109-2116	2.8	3
44	Control of catalytic nanoparticle synthesis: general discussion. <i>Faraday Discussions</i> , 2018 , 208, 471-495	3.6	2
43	Co-oxidation of octane and benzaldehyde using molecular oxygen with AuPd/carbon prepared by sol-immobilisation. <i>Catalysis Science and Technology</i> , 2015 , 5, 3953-3959	5.5	2
42	An Attempt at Enhancing the Regioselective Oxidation of Decane Using Catalysis with Reverse Micelles. <i>Catalysis Letters</i> , 2012 , 142, 302-307	2.8	2
41	Unexpected enhanced activity catalysts for butane oxidation using mixtures derived from VOHPO4D.5H2O and AlPO4. <i>Journal of Materials Chemistry</i> , 2005 , 15, 4295		2
40	Microstructural differences between the catalyst and the standard V5+ phases of VPO. <i>Microscopy and Microanalysis</i> , 2003 , 9, 316-317	0.5	2
39	A study of methane activation by modified gallium- and zinc-based catalysts. <i>Research on Chemical Intermediates</i> , 2003 , 29, 911-920	2.8	2
38	Effect of group 13 compounds and bulky organic oxygenates as structural promoters for the selective oxidation of n-butane with vanadium phosphorus oxide catalysts. <i>New Journal of Chemistry</i> , 2001 , 25, 1528-1536	3.6	2
37	Comments on the use of buckminsterfullerene encapsulated in zeolite Y as a potential catalyst. <i>Catalysis Letters</i> , 1995 , 30, 131-134	2.8	2
36	Methanol conversion to hydrocarbons over H-ZSM-5: Further evidence for the role of NO. <i>Catalysis Letters</i> , 1990 , 4, 7-14	2.8	2
35	Reaction of ethyl diazoacetate with the zeolite catalyst H-ZSM-5: a model study of carbonEarbon bond formation. <i>Journal of the Chemical Society Chemical Communications</i> , 1986 , 1006-1008		2
34	Lanthanum modified Fe-ZSM-5 zeolites for selective methane oxidation with H2O2. <i>Catalysis Science and Technology</i> ,	5.5	2

33	The direct synthesis of hydrogen peroxide over Au and Pd nanoparticles: A DFT study. <i>Catalysis Today</i> , 2020 , 381, 76-76	5.3	2
32	The Direct Synthesis of Hydrogen Peroxide Over Supported Pd-Based Catalysts: An Investigation into the Role of the Support and Secondary Metal Modifiers. <i>Catalysis Letters</i> ,1	2.8	2
31	Transfer hydrogenation of methyl levulinate with methanol to gamma valerolactone over Cu-ZrO2: A sustainable approach to liquid fuels. <i>Catalysis Communications</i> , 2022 , 164, 106430	3.2	2
30	The Critical Role of P dZn Alloy in Pd/ZnO Catalysts for the Hydrogenation of Carbon Dioxide to Methanol <i>ACS Catalysis</i> , 2022 , 12, 5371-5379	13.1	2
29	The effect of ring size on the selective carboxylation of cycloalkene oxides. <i>Catalysis Science and Technology</i> , 2017 , 7, 1433-1439	5.5	1
28	Ambient Temperature CO Oxidation Using Palladium B latinum Bimetallic Catalysts Supported on Tin Oxide/Alumina. <i>Catalysts</i> , 2020 , 10, 1223	4	1
27	Synchrotron Radiation and Catalytic Science. Synchrotron Radiation News, 2020, 33, 10-14	0.6	1
26	Theory as a driving force to understand reactions on nanoparticles: general discussion. <i>Faraday Discussions</i> , 2018 , 208, 147-185	3.6	1
25	Assessing and Controlling the Size, Morphology and Composition of Supported Bimetallic Catalyst Nanoparticles. <i>Microscopy and Microanalysis</i> , 2014 , 20, 74-75	0.5	1
24	Vanadium Phosphate Catalysts499-537		1
23	New molecularly modified noble metal catalysts for gas phase hydrogenation reactions. <i>New Journal of Chemistry</i> , 2003 , 27, 1367	3.6	1
22	Comments on the characterisation of oxidation catalysts using TPR/TPO. <i>Catalysis Letters</i> , 2005 , 102, 271-279	2.8	1
21	Iron-chromium mixed metal oxides catalyse the oxidative dehydrogenation of propane using carbon dioxide. <i>Catalysis Communications</i> , 2022 , 162, 106383	3.2	1
20	Low-Temperature Catalytic Selective Oxidation of Methane to Methanol. <i>Green Chemistry and Sustainable Technology</i> , 2019 , 37-59	1.1	1
19	The formation of methanol from glycerol bio-waste over doped ceria-based catalysts. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2020 , 378, 20200059	3	1
18	The direct synthesis of hydrogen peroxide using a combination of a hydrophobic solvent and water. <i>Catalysis Science and Technology</i> , 2020 , 10, 8203-8212	5.5	1
17	Effect of the Preparation Method of LaSrCoFeOx Perovskites on the Activity of N2O Decomposition. <i>Catalysis Letters</i> ,1	2.8	1
16	Combination of Cu/ZnO Methanol Synthesis Catalysts and ZSM-5 Zeolites to Produce Oxygenates from CO2 and H2. <i>Topics in Catalysis</i> ,1	2.3	1

LIST OF PUBLICATIONS

15	Three step synthesis of benzylacetone and 4-(4-methoxyphenyl)butan-2-one in flow using micropacked bed reactors. <i>Chemical Engineering Journal</i> , 2019 , 377, 119976	14.7	1
14	Improving the performance of Pd based catalysts for the direct synthesis of hydrogen peroxide via acid incorporation during catalyst synthesis. <i>Catalysis Communications</i> , 2021 , 161, 106358	3.2	1
13	The oxidative degradation of phenol via in situ H2O2 synthesis using Pd supported Fe-modified ZSM-5 catalysts. <i>Catalysis Science and Technology</i> ,	5.5	1
12	Analysing the relationship between the fields of thermo- and electrocatalysis taking hydrogen peroxide as a case study <i>Nature Communications</i> , 2022 , 13, 1973	17.4	1
11	Oxidation of Butane to Maleic Anhydride using Vanadium Phosphate Catalysts: Comparison of Operation in Aerobic and Anaerobic Conditions using a Gas-gas Periodic Flow Reactor. <i>Catalysis Letters</i> , 2006 , 106, 127-131	2.8	0
10	A combined periodic DFT and QM/MM approach to understand the radical mechanism of the catalytic production of methanol from glycerol. <i>Faraday Discussions</i> , 2021 , 229, 108-130	3.6	Ο
9	Controlled reduction of aromaticity of alkylated polyaromatic compounds by selective oxidation using H2WO4, H3PO4 and H2O2: a route for upgrading heavy oil fractions. <i>New Journal of Chemistry</i> , 2021 , 45, 13885-13892	3.6	О
8	Designing heterogeneous catalysts. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2018 , 474, 20180514	2.4	
7	Electron Microscopy Informed Catalyst Design. <i>Microscopy and Microanalysis</i> , 2019 , 25, 2282-2283	0.5	
6	Selective Oxidation of Alkyl-Substituted Polyaromatics Using Ruthenium-Ion-Catalyzed Oxidation. <i>Chemistry - A European Journal</i> , 2015 , 21, 4169-4169	4.8	
5	Nanocrystalline gold and gold-palladium as effective catalysts for selective oxidation. <i>Materials Research Society Symposia Proceedings</i> , 2005 , 900, 1		
4	The Over-Riding Role of Autocatalysis in Allylic Oxidation. <i>Catalysis Letters</i> ,1	2.8	
3	Controlling product selectivity with nanoparticle composition in tandem chemo-biocatalytic styrene oxidation. <i>Green Chemistry</i> , 2021 , 23, 4170-4180	10	
2	Identification of C-C products from CO hydrogenation over PdZn/TiO-ZSM-5 hybrid catalysts. <i>Faraday Discussions</i> , 2021 , 230, 52-67	3.6	

The Selective Oxidation of Methane to Oxygenates Using Heterogeneous Catalysts **2022**, 183-201