Qixin Zhuang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1860744/publications.pdf

Version: 2024-02-01

93 papers

3,058 citations

30 h-index 52 g-index

93 all docs 93 docs citations

93 times ranked 3697 citing authors

#	Article	IF	CITATIONS
1	Non-covalently modified graphene@poly(ionic liquid) nanocomposite with high-temperature resistance and enhanced dielectric properties. Composites Part A: Applied Science and Manufacturing, 2022, 154, 106800.	7.6	13
2	Construction of a flexible 1D core–shell Al ₂ O ₃ @NaNbO ₃ 3nanowire/poly(<i>p</i> -phenylene benzobisoxazole) nanocomposite with stable and enhanced dielectric properties in an ultra-wide temperature range. Journal of Materials Chemistry C, 2022, 10, 716-725.	5.5	16
3	Construction of Co/C@MoS2 core–shell nanocubes with enhanced electromagnetic-wave absorption performance. Journal of Alloys and Compounds, 2022, 905, 164080.	5.5	13
4	Ultralight, highly compressible, thermally stable MXene/aramid nanofiber anisotropic aerogels for electromagnetic interference shielding. Journal of Materials Chemistry A, 2022, 10, 6690-6700.	10.3	69
5	Tuning the interfacial insulating shell characteristics in CaCu ₃ Ti ₄ O ₁₂ nanowires/polyetherimide nanocomposites for high-temperature capacitive energy storage. Journal of Materials Chemistry C, 2022, 10, 7962-7969.	5. 5	20
6	Hierarchical Multi-Core–Shell CoNi@Graphite Carbon@Carbon Nanoboxes for Highly Efficient Broadband Microwave Absorption. ACS Applied Nano Materials, 2022, 5, 7300-7311.	5.0	11
7	Self-assembly magnetized 3D hierarchical graphite carbon-based heterogeneous yolk–shell nanoboxes with enhanced microwave absorption. Journal of Materials Chemistry A, 2022, 10, 11405-11413.	10.3	28
8	Antibacterial mechanism of Nâ€PMI and the characteristics of PMMAâ€coâ€Nâ€PMI copolymer. Chemistry and Biodiversity, 2022, , .	2.1	0
9	Covalently modified and hierarchically structured corn-like BNNs@BT/benzoxazole composites with enhanced dielectric properties over an ultra-wide temperature range. Composites Part A: Applied Science and Manufacturing, 2022, 160, 107027.	7.6	6
10	A novel poly(p-phenylene benzobisoxazole) (PBO)-based three-phase silk-cocoon network structure nanocomposites with enhanced dielectric properties. Journal of Materials Science: Materials in Electronics, 2021, 32, 7574-7586.	2.2	6
11	Preparing Multifunctional High-Performance Cross-Linked Polybenzoxazole Aerogels from Polybenzoxazine. ACS Applied Polymer Materials, 2021, 3, 2352-2362.	4.4	24
12	Microwave absorption of carbonization temperature-dependent uniform yolk-shell H-Fe3O4@C microspheres. Chemical Engineering Journal, 2021, 420, 129875.	12.7	70
13	Mainchain Alternating Azopolymers with Fast Photo-Induced Reversible Transition Behavior. Macromolecules, 2021, 54, 10040-10048.	4.8	19
14	Benzoxazole-polymer@CCTO hybrid nanoparticles prepared <i>via</i> RAFT polymerization: toward poly(<i>p</i> -phenylene benzobisoxazole) nanocomposites with enhanced high-temperature dielectric properties. Journal of Materials Chemistry A, 2021, 9, 26010-26018.	10.3	28
15	Mitochondriaâ€∓argeted Nanoscale MOFs for Improved Photodynamic Therapy. ChemNanoMat, 2020, 6, 89-98.	2.8	19
16	Efficient microwave traps with markedly enhanced interfacial polarization and impedance matching enabled by dual-shelled, dual-cavity magnetic@dielectric hollow nanospheres. Journal of Materials Chemistry C, 2020, 8, 16489-16497.	5.5	15
17	Amphiphilic Organic Cages: Selfâ€Assembly into Nanotubes and Enhanced Anionâ€i€ Interactions. ChemPlusChem, 2020, 85, 906-909.	2.8	2
18	Efficient enzyme-activated therapy based on the different locations of protein and prodrug in nanoMOFs. Journal of Materials Chemistry B, 2020, 8, 6139-6147.	5.8	19

#	Article	IF	CITATIONS
19	Design and development of HMS@ZIF-8/fluorinated polybenzoxazole composite films with excellent low- <i>k</i> performance, mechanical properties and thermal stability. Journal of Materials Chemistry C, 2020, 8, 7476-7484.	5.5	27
20	Bioâ€based benzoxazines based on sesamol: Synthesis and properties. Journal of Applied Polymer Science, 2019, 136, 48255.	2.6	29
21	Metal–Organic Frameworks Bearing Dense Alkyl Thiol for the Efficient Degradation and Concomitant Removal of Toxic Cr(VI). Langmuir, 2019, 35, 16226-16233.	3.5	37
22	Highly Selective CO ₂ Uptake in Novel Fishnet-like Polybenzoxazine-Based Porous Carbon. Energy & Description of the Energy & Descrip	5.1	33
23	Specific detection of hypochlorite based on the size-selective effect of luminophore integrated MOF-801 synthesized by a one-pot strategy. Dalton Transactions, 2019, 48, 2617-2625.	3.3	30
24	Effect of NH2-functionalized carbon nanospheres on the performances of poly(p-phenylene) Tj ETQq0 0 0 rgBT / Electronics, 2019, 30, 7567-7576.	Overlock 1 2.2	10 Tf 50 547
25	The synthesis, self-assembly and pH-responsive fluorescence enhancement of an alternating amphiphilic copolymer with azobenzene pendants. Polymer Chemistry, 2019, 10, 4025-4030.	3.9	23
26	A core@double shell-structured PBO composite with excellent dielectric properties and high heat resistance. Journal of Materials Chemistry A, 2019, 7, 11195-11204.	10.3	13
27	Fluorine-Free Superhydrophobic Coatings Based on Silicone and Functionalized Colloidal Silica. Coatings, 2019, 9, 159.	2.6	11
28	One-pot doping platinum porphyrin recognition centers in Zr-based MOFs for ratiometric luminescent monitoring of nitric oxide in living cells. Talanta, 2019, 200, 472-479.	5 . 5	27
29	Substitution-type luminescent MOF sensor with built-in capturer for selective cholesterol detection in blood serum. Journal of Materials Chemistry C, 2019, 7, 12674-12681.	5.5	41
30	A robust MOF-based trap with high-density active alkyl thiol for the super-efficient capture of mercury. Chemical Communications, 2019, 55, 12972-12975.	4.1	84
31	Green separation of rare earth elements by valence-selective crystallization of MOFs. Chemical Communications, 2019, 55, 14902-14905.	4.1	9
32	Selective Separation of Isomeric Dicarboxylic Acid by the Preferable Crystallization of Metalâ€Organic Frameworks. Chemistry - an Asian Journal, 2019, 14, 135-140.	3.3	9
33	<i>In situ</i> synthesis of high dielectric constant GNPs/PBO nanocomposites with enhanced thermostability. IET Nanodielectrics, 2019, 2, 97-102.	4.1	6
34	Aqueousâ€Phase Synthesis of Mesoporous Zrâ€Based MOFs Templated by Amphoteric Surfactants. Angewandte Chemie, 2018, 130, 3497-3501.	2.0	32
35	Effect of modified phenolic resin on crosslinked network and performances of polyvinyl acetate blending emulsion. Journal of Applied Polymer Science, 2018, 135, 46448.	2.6	6
36	Aqueousâ€Phase Synthesis of Mesoporous Zrâ€Based MOFs Templated by Amphoteric Surfactants. Angewandte Chemie - International Edition, 2018, 57, 3439-3443.	13.8	78

#	Article	IF	CITATIONS
37	Nanoscale Zrâ€Based MOFs with Tailorable Size and Introduced Mesopore for Protein Delivery. Advanced Functional Materials, 2018, 28, 1707356.	14.9	92
38	Hierarchical Porous Zrâ€Based MOFs Synthesized by a Facile Monocarboxylic Acid Etching Strategy. Chemistry - A European Journal, 2018, 24, 2962-2970.	3.3	91
39	(PtBA-co-PPEGMEMA-co-PDOMA)-g-PPFA polymer brushes synthesized by sequential RAFT polymerization and ATRP. Polymer Chemistry, 2018, 9, 2821-2829.	3.9	21
40	Light-Driven Transformation of Bio-Inspired Superhydrophobic Structure via Reconfigurable PAzoMA Microarrays: From Lotus Leaf to Rice Leaf. Macromolecules, 2018, 51, 2742-2749.	4.8	58
41	Reduced polyaniline decorated reduced graphene oxide/polyimide nanocomposite films with enhanced dielectric properties and thermostability. Composites Part A: Applied Science and Manufacturing, 2018, 109, 578-584.	7.6	41
42	Zr-Based MOFs integrated with a chromophoric ruthenium complex for specific and reversible Hg ²⁺ sensing. Dalton Transactions, 2018, 47, 5570-5574.	3.3	28
43	In situ Carbothermal Synthesis of Nanoscale Zeroâ€Valent Iron Functionalized Porous Carbon from Metal–Organic Frameworks for Efficient Detoxification of Chromium(VI). European Journal of Inorganic Chemistry, 2018, 2018, 23-30.	2.0	34
44	Formation of unique three-dimensional interpenetrating network structure with a ternary composite. Journal of Materials Science: Materials in Electronics, 2018, 29, 18699-18707.	2.2	6
45	Enhanced dielectric performance of PDMS-based three-phase percolative nanocomposite films incorporating a high dielectric constant ceramic and conductive multi-walled carbon nanotubes. Journal of Materials Chemistry C, 2018, 6, 10829-10837.	5.5	59
46	The water-based synthesis of chemically stable Zr-based MOFs using pyridine-containing ligands and their exceptionally high adsorption capacity for iodine. Dalton Transactions, 2017, 46, 7412-7420.	3.3	111
47	Zr-Based MOFs Shielded with Phospholipid Bilayers: Improved Biostability and Cell Uptake for Biological Applications. Chemistry of Materials, 2017, 29, 4580-4589.	6.7	82
48	Core/shell-structured hyperbranched aromatic polyamide functionalized graphene nanosheets-poly(p-phenylene benzobisoxazole) nanocomposite films with improved dielectric properties and thermostability. Journal of Materials Chemistry A, 2017, 5, 8705-8713.	10.3	59
49	Novel Fully Biobased Benzoxazines from Rosin: Synthesis and Properties. ACS Sustainable Chemistry and Engineering, 2017, 5, 10682-10692.	6.7	105
50	Simultaneous Degradation and Removal of Cr ^{VI} from Aqueous Solution with Zrâ€Based Metalâ€"Organic Frameworks Bearing Inherent Reductive Sites. Chemistry - A European Journal, 2017, 23, 15415-15423.	3.3	58
51	Porphyrinic MOFs for reversible fluorescent and colorimetric sensing of mercury(<scp>ii</scp>) ions in aqueous phase. RSC Advances, 2016, 6, 69807-69814.	3.6	76
52	Improvement of the interfacial shear strength of poly(<i>p</i> perior in the interfacial shear strength of poly(<i>p</i> perior in the interfacial shear strength of poly(<i>p</i> perior in the interfacial shear strength of poly(<i>p</i> perior in the interfacial shear strength of poly(<i>p</i> perior in the interfacial shear strength of poly(<i>p</i> perior in the interfacial shear strength of poly(<i>p</i> perior in the interfacial shear strength of poly(<i>p</i> perior in the interfacial shear strength of poly(<i>p</i> perior in the interfacial shear strength of poly(<i>p</i> perior in the interfacial shear strength of poly(<i>p</i> perior in the interfacial shear strength of poly(<i>p</i> perior in the interfacial shear strength of poly(<i>p</i> perior in the interfacial shear strength of poly(<i>p</i> perior in the interfacial shear strength of poly(<i>p<i>p</i>perior in the interfacial shear strength of poly(<i>p<i>p<i>p<i>p<i>p<i>p<i>p<i>p<i>p<i>p</i></i></i></i></i></i></i></i></i></i></i>	4.6	15
53	Real-Time Monitoring of Dissolved Oxygen with Inherent Oxygen-Sensitive Centers in Metal–Organic Frameworks. Chemistry of Materials, 2016, 28, 2652-2658.	6.7	56
54	NH ₂ -functionalized carbon-coated Fe ₃ O ₄ core–shell nanoparticles for in situ preparation of robust polyimide composite films with high dielectric constant, low dielectric loss, and high breakdown strength. RSC Advances, 2016, 6, 107533-107541.	3.6	17

#	Article	IF	CITATIONS
55	Preparation of MWNT-g-poly(2,5-benzoxazole) (ABPBO) with excellent electromagnetic absorption properties in the Ku band via atom transfer radical polymerization (ATRP). Journal of Materials Science, 2016, 51, 7370-7382.	3.7	4
56	Synthesis, structure, and properties of highâ€impact polystyrene/octavinyl polyhedral oligomeric silsesquioxane nanocomposites. Polymer Composites, 2016, 37, 1049-1055.	4.6	17
57	An investigation into the hydrogen bond of poly (pâ€phenylene benzobisoxazole)/carboxylic carbon nanotube composites, insight from quantum mechanics/molecular mechanics simulation. Polymer Composites, 2015, 36, 1454-1461.	4.6	7
58	In situ synthesis of ternary BaTiO ₃ /MWNT/PBO electromagnetic microwave absorption composites with excellent mechanical properties and thermostabilities. Journal of Materials Chemistry A, 2015, 3, 8205-8214.	10.3	41
59	Preparation of Solution-Processable Reduced Graphene Oxide/Polybenzoxazole Nanocomposites with Improved Dielectric Properties. Macromolecules, 2015, 48, 365-372.	4.8	68
60	Preparation and characterization of STRG/PI composite films with optimized dielectric and mechanical properties. Polymer, 2015, 65, 262-269.	3.8	15
61	Metal–organic frameworks with inherent recognition sites for selective phosphate sensing through their coordination-induced fluorescence enhancement effect. Journal of Materials Chemistry A, 2015, 3, 7445-7452.	10.3	330
62	Preparation and properties of thermostable well-functionalized graphene oxide/polyimide composite films with high dielectric constant, low dielectric loss and high strength via in situ polymerization. Journal of Materials Chemistry A, 2015, 3, 10005-10012.	10.3	105
63	In situ synthesis and characterization of fluorinated polybenzobisoxazole/silica-coated magnetic Fe3 O4 nanocomposites exhibiting enhanced electromagnetic wave absorption property. Polymer Composites, 2015, 36, 884-891.	4.6	7
64	Synthesis and Characterization of Polybenzobisoxazole Polymers Containing Trifluoromethyl or Sulfone Groups. Journal of Macromolecular Science - Physics, 2014, 53, 412-427.	1.0	4
65	High performance crosslinked system based on reaction of benzoxazine with benzoxazole. Journal of Polymer Science Part A, 2014, 52, 1514-1518.	2.3	19
66	î³-Fe ₂ O ₃ –MWNT/poly(p-phenylenebenzobisoxazole) composites with excellent microwave absorption performance and thermal stability. Nanoscale, 2014, 6, 6440-6447.	5 . 6	89
67	Improvement of interfacial shear strengths of polybenzobisoxazole fiber/epoxy resin composite by nâ€√iO ₂ coating. Journal of Applied Polymer Science, 2013, 127, 2990-2995.	2.6	31
68	Trap-induced light enhancement from a polymer light emitting device. Applied Physics Letters, 2013, 103, 043306.	3.3	4
69	Synthesis and copolymerization of benzoxazines with low-dielectric constants and high thermal stability. RSC Advances, 2013, 3, 5261.	3. 6	48
70	Synthesis and photoluminescence properties of polybenzoxazoles containing perylenebisimide functionalized graphene nanosheets via stacking interactions. New Journal of Chemistry, 2013, 37, 2500.	2.8	11
71	A New Benzoxazine Containing Benzoxazole-Functionalized Polyhedral Oligomeric Silsesquioxane and the Corresponding Polybenzoxazine Nanocomposites. Macromolecules, 2013, 46, 2696-2704.	4.8	115
72	Electrochemic and Photophysics Properties of Pyridine-Based Electron Transmission Material. Journal of Macromolecular Science - Physics, 2013, 52, 826-840.	1.0	1

#	Article	IF	CITATIONS
73	Preparation of thermostable PBO/graphene nanocomposites with high dielectric constant. Nanotechnology, 2013, 24, 245702.	2.6	38
74	Enhanced solubility of novel poly(benzoxazole)s with a soft linkage and a rigid pendant group. Polymer International, 2013, 62, 721-727.	3.1	1
75	Current remote sensing options for monitoring carbon emissions. , 2013, , .		1
76	A novel approach to assess and monitor forests for REDD. , 2013, , .		0
77	<i>In situ</i> polymerization and photophysical properties of poly(<i>p</i> â€phenylene) Tj ETQq1 1 0.784314 rg 124, 4740-4746.	gBT /Overl 2.6	ock 10 Tf 50 12
78	Synthesis of acid-soluble graphene and its use in producing a reduced graphene oxide–poly(benzobisoxazole) composite. Journal of Materials Chemistry, 2012, 22, 12381.	6.7	19
79	Synthesis of multiwalled carbon nanotube/fluorineâ€containing poly(<i>p</i> ê€phenylene benzoxazole) composites exhibiting greatly enhanced dielectric constants. Journal of Polymer Science Part A, 2012, 50, 4732-4739.	2.3	13
80	Preparation and properties of novel low dielectric constant benzoxazoleâ€based polybenzoxazine. Journal of Polymer Science Part A, 2012, 50, 5115-5123.	2.3	66
81	Molecular simulation of the effect of graft structure on the miscibility of highâ€impact polystyrene blends. Polymer Composites, 2012, 33, 430-435.	4.6	6
82	Study on the photoinduced electronâ€transfer activity of poly(<i>p</i> a€phenylene) Tj ETQq0 0 0 rgBT /Overlock polymerization. Polymer Composites, 2012, 33, 1295-1301.	k 10 Tf 50 4.6	387 Td (ben 5
83	Study on photoaging of poly(<i>p</i> a€phenylene benzobisoxazole) fiber. Journal of Applied Polymer Science, 2012, 124, 1050-1058.	2.6	20
84	In situ synthesis and characterization of poly(2,5-benzoxazole)/multiwalled carbon nanotubes composites. Polymer, 2011, 52, 5271-5276.	3.8	24
85	Molecular simulation of miscibility of poly(2,6â€dimethylâ€1,4â€phenylene) Tj ETQq1 1 0.784314 rgBT /Overlock	k 10 Tf 50 4.6	267 Td (eth
86	Mechanism of degradation of poly(<i>p</i> â€phenylene benzobisoxazole) under hydrolytic conditions. Journal of Applied Polymer Science, 2011, 121, 1734-1739.	2.6	14
87	Protonation Effect of Polybenzoxazole: Experimental Evidence. Journal of Macromolecular Science - Pure and Applied Chemistry, 2010, 47, 977-982.	2.2	6
88	Synthesis and Optical Properties of Novel Conjugated Rigid-Rod Polymer Derived from Fluorene and Benzobisoxazole. Polymer Bulletin, 2008, 60, 765-774.	3.3	7
89	Synthesis and properties of polybenzazoles containing flexible methylene in backbone. Frontiers of Chemical Engineering in China, 2008, 2, 412-416.	0.6	0
90	Shear flow behaviors of poly(<i>p</i> êphenylene benzobisoxazole) spinning dope. Journal of Applied Polymer Science, 2008, 110, 1899-1904.	2.6	5

QIXIN ZHUANG

#	Article	IF	CITATIONS
91	Kinetics of thermal degradation of poly(p-phenylene benzobisoxazole). Journal of Applied Polymer Science, 2007, 103, 3675-3679.	2.6	2
92	Competition between Host Aggregates and Isolated Guest Chromophores in Trapping Excitons in Polybenzazole Copolymers and Blends. Macromolecular Chemistry and Physics, 2006, 207, 2336-2342.	2.2	8
93	Permanent antimicrobial polymethyl methacrylate prepared by chemical bonding with poly(hexamethylene guanidine hydrochloride). Polymers for Advanced Technologies, 0, , .	3.2	2