
Yun-Jiao Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1860445/publications.pdf Version: 2024-02-01

Υμη-Ιμο Ιι

#	Article	IF	CITATIONS
1	Enhancement on structural stability of Ni-rich cathode materials by in-situ fabricating dual-modified layer for lithium-ion batteries. Nano Energy, 2019, 65, 104043.	16.0	193
2	Li4V2Mn(PO4)4-stablized Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode materials for lithium ion batteries. Nano Energy, 2019, 63, 103889.	16.0	138
3	Boosting cell performance of LiNi0.8Co0.1Mn0.1O2 cathode material via structure design. Journal of Energy Chemistry, 2021, 55, 114-123.	12.9	94
4	Boosting Cell Performance of LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ via Surface Structure Design. Small, 2019, 15, e1904854.	10.0	92
5	Enhanced electrochemical performance of Li3PO4 modified Li[Ni0.8Co0.1Mn0.1]O2 cathode material via lithium-reactive coating. Journal of Alloys and Compounds, 2019, 773, 112-120.	5.5	88
6	Enhanced electrochemical properties of the Cd-modified LiNi0.6Co0.2Mn0.2O2 cathode materials at high cut-off voltage. Journal of Power Sources, 2018, 395, 403-413.	7.8	70
7	In Situ-Formed Hollow Cobalt Sulfide Wrapped by Reduced Graphene Oxide as an Anode for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 2671-2678.	8.0	56
8	High-voltage electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode material via the synergetic modification of the Zr/Ti elements. Electrochimica Acta, 2018, 281, 48-59.	5.2	54
9	High-voltage electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode materials via Al concentration gradient modification. Ceramics International, 2018, 44, 8809-8817.	4.8	44
10	Suppress voltage decay of lithium-rich materials by coating layers with different crystalline states. Journal of Energy Chemistry, 2021, 60, 591-598.	12.9	39
11	Encouraging Voltage Stability upon Long Cycling of Li-Rich Mn-Based Cathode Materials by Ta–Mo Dual Doping. ACS Applied Materials & Interfaces, 2021, 13, 25981-25992.	8.0	38
12	Dual functions of residue Li-reactive coating with C4H6CoO4 on high-performance LiNiO2 cathode material. Electrochimica Acta, 2019, 300, 26-35.	5.2	36
13	Nd2O3 encapsulation-assisted surface passivation of Ni-rich LiNi0.8Co0.1Mn0.1O2 active material and its electrochemical performance. Electrochimica Acta, 2019, 325, 134889.	5.2	33
14	Enhanced electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode by surface modification using La–Co–O compound. Ceramics International, 2021, 47, 2656-2664.	4.8	26
15	Microcrack generation and modification of Ni-rich cathodes for Li-ion batteries: A review. Sustainable Materials and Technologies, 2021, 29, e00305.	3.3	25
16	Separation of Molybdenum from Tungstate Solution—Scavenging Thiomolybdate by Copper Compound. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2012, 43, 1284-1289.	2.1	23
17	A sandwich-like Ti3C2@VO2 composite synthesized by a hydrothermal method for lithium storage. Solid State Ionics, 2021, 369, 115714.	2.7	22
18	Enhancing Cell Performance of Lithium-Rich Manganese-Based Materials via Tailoring Crystalline States of a Coating Layer. ACS Applied Materials & Interfaces, 2021, 13, 49390-49401.	8.0	22

Yun-Jiao Li

#	Article	IF	CITATIONS
19	Lattice Engineering to Refine Particles and Strengthen Bonds of the LiNi _{0.9} Co _{0.05} 0.050.05O ₂ Cathode toward Efficient Lithium Ion Storage. ACS Sustainable Chemistry and Engineering, 2022, 10, 3532-3545.	6.7	21
20	Single-walled carbon nanotube as conductive additive for SiO/C composite electrodes in pouch-type lithium-ion batteries. Ionics, 2020, 26, 1721-1728.	2.4	19
21	A novel hollow porous structure designed for Na0.44Mn2/3Co1/6Ni1/6O2 cathode material of sodium-ion batteries. Journal of Power Sources, 2020, 479, 228788.	7.8	19
22	Modification of LiNi0.8Co0.1Mn0.1O2 cathode materials from the perspective of chemical stabilization and kinetic hindrance. Journal of Power Sources, 2021, 499, 229756.	7.8	19
23	Self-assembled GeO _X /Ti ₃ C ₂ T _X Composites as Promising Anode Materials for Lithium Ion Batteries. Inorganic Chemistry, 2020, 59, 4711-4719.	4.0	18
24	A novelty strategy induced pinning effect and defect structure in Ni-rich layered cathodes towards boosting its electrochemical performance. Journal of Energy Chemistry, 2022, 72, 570-580.	12.9	18
25	Structure and primary particle double-tuning by trace nano-TiO ₂ for a high-performance LiNiO ₂ cathode material. Sustainable Energy and Fuels, 2019, 3, 3234-3243.	4.9	16
26	Multifunctionality of cerium decoration in enhancing the cycling stability and rate capability of a nickel-rich layered oxide cathode. Nanoscale, 2021, 13, 20213-20224.	5.6	16
27	Synthesis and characterization of SiO2/Ti3C2 anode materials for lithium-ion batteries via different methods. Ionics, 2020, 26, 5325-5331.	2.4	15
28	Role of Al on the electrochemical performances of quaternary nickel-rich cathode LiNi0.8Co0.1Mn0.1â´´Al O2 (0Ââ‰ÂxÂâ‰Â0.06) for lithium-ion batteries. Journal of Electroanalytical Chemistry, 2021, 888, 115200.	3.8	15
29	Suppressing Nickel Dissolution in Niâ€rich Layered Oxide Cathodes Using NiF ₂ as Electrolyte Additive. ChemElectroChem, 2019, 6, 3125-3131.	3.4	13
30	Decomposing scheelite and scheelite-wolframite mixed concentrate by caustic soda digestion. Central South University, 2003, 10, 297-300.	0.5	11
31	Towards superior cyclability of LiNi0.8Co0.15Al0.05O2 cathode material for lithium ion batteries via yttrium modification. Journal of Alloys and Compounds, 2021, 874, 159713.	5.5	11
32	Potassium phosphate monobasic induced decoration from the surface into the bulk lattice for Ni-rich cathode materials with enhanced cell performance. Sustainable Energy and Fuels, 2020, 4, 3352-3362.	4.9	10
33	Synthesis of a fine LiNi _{0.88} Co _{0.09} Al _{0.03} O ₂ cathode material for lithium-ion batteries <i>via</i> a solvothermal route and its improved high-temperature cyclic performance. RSC Advances, 2020, 10, 9917-9923.	3.6	10
34	Surface in-situ reconstruction of LiNi0.8Co0.1Mn0.1O2 cathode materials interacting with antimony compounds and the electrochemical performances. Journal of Electroanalytical Chemistry, 2019, 854, 113582.	3.8	8
35	Structural Evolution and Formation Mechanism of LiNiO2 During High-Temperature Solid-State Synthesis. Journal of Electrochemical Energy Conversion and Storage, 2019, 16, .	2.1	8
36	Synthesis and characterization of Li4Ti5O12 via a hydrolysis process from TiCl4 aqueous solution. Rare Metals, 2014, 33, 459-465.	7.1	7

Yun-Jiao Li

#	Article	IF	CITATIONS
37	Influence of the Synthesis Route on the Properties of Hybrid NiO–MnCo ₂ O ₄ –Ni ₆ MnO ₈ Anode Materials and their Electrochemical Performances. ChemSusChem, 2020, 13, 1890-1899.	6.8	6
38	Eh–pH diagrams from 333.15 to 453.15K for lithium–titanium composite oxides and their synthesis in aqueous solution. Hydrometallurgy, 2014, 142, 131-136.	4.3	5
39	Achieving structural stability of LiCoO2 at high-voltage by gadolinium decoration. Materials Today Energy, 2022, 25, 100980.	4.7	5
40	Thermodynamic and experimental analysis of Ni-Co-Mn carbonate precursor synthesis for Li-rich cathode materials. Ionics, 2020, 26, 2747-2755.	2.4	4
41	Synthesis and characterization of Nd doped M-type hexagonal barium ferrite ultrafine powders. Central South University, 2001, 8, 130-134.	0.5	3
42	Thermodynamic analysis of Li-Ni-Co-Mn-H2O system and synthesis of LiNi0.5Co0.2Mn0.3O2 composite oxide via aqueous process. Journal of Central South University, 2019, 26, 2668-2680.	3.0	3
43	One-dimensional Hierarchical Porous Layered Oxide LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Cathode for Lithium-ion Batteries via Self-template Interstitial Co-precipitation Method. Chemistry Letters, 2021, 50, 1385-1387.	1.3	2
44	Towards Superior Electrochemical Property of Nickel-High Cathode Materials with a Multi-Functional Modification Strategy. Journal of the Electrochemical Society, 2021, 168, 050518.	2.9	0