Michael C Constantinou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1860067/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Behaviour of the double concave Friction Pendulum bearing. Earthquake Engineering and Structural Dynamics, 2006, 35, 1403-1424.	2.5	271
2	Spherical sliding isolation bearings with adaptive behavior: Theory. Earthquake Engineering and Structural Dynamics, 2008, 37, 163-183.	2.5	185
3	Spherical sliding isolation bearings with adaptive behavior: Experimental verification. Earthquake Engineering and Structural Dynamics, 2008, 37, 185-205.	2.5	145
4	An advanced numerical model of elastomeric seismic isolation bearings. Earthquake Engineering and Structural Dynamics, 2014, 43, 1955-1974.	2.5	140
5	Modeling Triple Friction Pendulum Bearings for Response-History Analysis. Earthquake Spectra, 2008, 24, 1011-1028.	1.6	132
6	Characterizing friction in sliding isolation bearings. Earthquake Engineering and Structural Dynamics, 2015, 44, 1409-1425.	2.5	117
7	Scissor-Jack-Damper Energy Dissipation System. Earthquake Spectra, 2003, 19, 133-158.	1.6	114
8	Vertical Stiffness of Elastomeric and Lead–Rubber Seismic Isolation Bearings. Journal of Structural Engineering, 2007, 133, 1227-1236.	1.7	109
9	Collapse performance of seismically isolated buildings designed by the procedures of ASCE/SEI 7. Engineering Structures, 2018, 164, 243-258.	2.6	96
10	Modeling strength degradation in lead–rubber bearings under earthquake shaking. Earthquake Engineering and Structural Dynamics, 2010, 39, 1533-1549.	2.5	88
11	Seismic Isolation Retrofit of Large Historic Building. Journal of Structural Engineering, 1996, 122, 298-308.	1.7	86
12	Effects of Heating on the Behavior of Lead-Rubber Bearings. I: Theory. Journal of Structural Engineering, 2009, 135, 1440-1449.	1.7	73
13	Equivalent Lateral Force and Modal Analysis Procedures of the 2000 NEHRP Provisions for Buildings with Damping Systems. Earthquake Spectra, 2003, 19, 959-980.	1.6	72
14	Probabilistic seismic performance assessment of seismically isolated buildings designed by the procedures of ASCE/SEI 7 and other enhanced criteria. Engineering Structures, 2019, 179, 566-582.	2.6	71
15	Probabilistic collapse resistance and residual drift assessment of buildings with fluidic self entering systems. Earthquake Engineering and Structural Dynamics, 2016, 45, 1935-1953.	2.5	68
16	Effects of Heating on the Behavior of Lead-Rubber Bearings. II: Verification of Theory. Journal of Structural Engineering, 2009, 135, 1450-1461.	1.7	67
17	Response of Nonstructural Components in Structures with Damping Systems. Journal of Structural Engineering, 2006, 132, 1108-1117.	1.7	63
18	Uplift-restraining Friction Pendulum seismic isolation system. Earthquake Engineering and Structural Dynamics, 2006, 35, 577-593.	2.5	61

#	Article	IF	CITATIONS
19	Incremental dynamic analysis of woodframe buildings. Earthquake Engineering and Structural Dynamics, 2009, 38, 477-496.	2.5	51
20	Validation of the 2000 NEHRP Provisions' Equivalent Lateral Force and Modal Analysis Procedures for Buildings with Damping Systems. Earthquake Spectra, 2003, 19, 981-999.	1.6	44
21	Numerical simulations of a highway bridge structure employing passive negative stiffness device for seismic protection. Earthquake Engineering and Structural Dynamics, 2015, 44, 973-995.	2.5	44
22	Extracting rotational components of earthquake ground motion using data recorded at multiple stations. Earthquake Engineering and Structural Dynamics, 2013, 42, 451-468.	2.5	43
23	A model of triple friction pendulum bearing for general geometric and frictional parameters. Earthquake Engineering and Structural Dynamics, 2016, 45, 1837-1853.	2.5	43
24	Combined horizontal–vertical seismic isolation system for high-voltage–power transformers: development, testing and validation. Bulletin of Earthquake Engineering, 2018, 16, 4273-4296.	2.3	38
25	Quintuple Friction Pendulum Isolator: Behavior, Modeling, and Validation. Earthquake Spectra, 2016, 32, 1607-1626.	1.6	35
26	Study of Elastoplastic Bridge Seismic Isolation System. Journal of Structural Engineering, 1997, 123, 489-498.	1.7	34
27	Experimental and analytical studies of structures seismically isolated with an uplift-restraining friction pendulum system. Earthquake Engineering and Structural Dynamics, 2006, 35, 595-611.	2.5	31
28	Experimental Shake Table Testing of an Adaptive Passive Negative Stiffness Device within a Highway Bridge Model. Earthquake Spectra, 2015, 31, 2163-2194.	1.6	31
29	Effect of displacement restraint on the collapse performance of seismically isolated buildings. Bulletin of Earthquake Engineering, 2019, 17, 2767-2786.	2.3	28
30	Hysteretic models for sliding bearings with varying frictional force. Earthquake Engineering and Structural Dynamics, 2013, 42, 2341-2360.	2.5	25
31	Principles of scaling and similarity for testing of lead–rubber bearings. Earthquake Engineering and Structural Dynamics, 2010, 39, 1551-1568.	2.5	19
32	Open-Space Damping System Description, Theory, and Verification. Journal of Structural Engineering, 2017, 143, .	1.7	17
33	Implications of strong earthquake ground motion duration on the response and testing of seismic isolation systems. Earthquake Engineering and Structural Dynamics, 2021, 50, 290-308.	2.5	16
34	Experimental Study of the XY-Friction Pendulum Bearing for Bridge Applications. Journal of Bridge Engineering, 2009, 14, 193-202.	1.4	15
35	Evaluation of simplified methods of analysis for structures with triple friction pendulum isolators. Earthquake Engineering and Structural Dynamics, 2010, 39, 5-22.	2.5	14
36	Behavior of a spherical deformable rolling seismic isolator for lightweight residential construction. Bulletin of Earthquake Engineering, 2019, 17, 4321-4345.	2.3	14

MICHAEL C CONSTANTINOU

#	Article	IF	CITATIONS
37	Parametric study of seismic collapse performance of lightweight buildings with spherical deformable rolling isolation system. Bulletin of Earthquake Engineering, 2020, 18, 1475-1498.	2.3	13
38	Further results on the heating of single and multi-core lead-rubber bearings and dampers. Bulletin of Earthquake Engineering, 2016, 14, 999-1016.	2.3	12
39	Energy Dissipation System Configurations for Improved Performance. , 2000, , 1.		10
40	Effect of superstructure modeling assumptions on the seismic performance of seismically isolated buildings. Earthquake Engineering and Structural Dynamics, 2021, 50, 1805-1823.	2.5	10
41	Performance evaluation of seismically isolated buildings near active faults. Earthquake Engineering and Structural Dynamics, 2022, 51, 1017-1037.	2.5	7
42	Nonlinear dynamic analysis of multi-base seismically isolated structures with uplift potential II: verification examples. Earthquake Engineering and Engineering Vibration, 2010, 9, 83-91.	1.1	6
43	Nonlinear dynamic analysis of multi-base seismically isolated structures with uplift potential I: formulation. Earthquake Engineering and Engineering Vibration, 2009, 8, 421-431.	1.1	4
44	On the design of a dense array to extract rotational components of earthquake ground motion. Bulletin of Earthquake Engineering, 2017, 15, 827-860.	2.3	4
45	Validation of a numerical model of a seismically isolated, cylindrical, fluidâ€filled vessel. Earthquake Engineering and Structural Dynamics, 2022, 51, 1857-1873.	2.5	4
46	Effect of Superstructure Deformation Capacity on the Collapse Performance of Seismically Isolated Buildings. Journal of Structural Engineering, 2022, 148, .	1.7	2
47	Special EESD issue on seismic protection techniques. Earthquake Engineering and Structural Dynamics, 2010, 39, 1417-1419.	2.5	1