
Helen C Ward

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1859658/publications.pdf Version: 2024-02-01

HELEN C WARD

#	Article	IF	CITATIONS
1	Urban Multi-scale Environmental Predictor (UMEP): An integrated tool for city-based climate services. Environmental Modelling and Software, 2018, 99, 70-87.	4.5	171
2	Potential influences on the United Kingdom's floods of winter 2013/14. Nature Climate Change, 2014, 4, 769-777.	18.8	149
3	Soil water content in southern England derived from a cosmicâ€ray soil moisture observing system – COSMOSâ€UK. Hydrological Processes, 2016, 30, 4987-4999.	2.6	102
4	Multi-season eddy covariance observations of energy, water and carbon fluxes over a suburban area in Swindon, UK. Atmospheric Chemistry and Physics, 2013, 13, 4645-4666.	4.9	96
5	Effects of urban density on carbon dioxide exchanges: Observations of dense urban, suburban and woodland areas of southern England. Environmental Pollution, 2015, 198, 186-200.	7.5	84
6	Surface Urban Energy and Water Balance Scheme (SUEWS): Development and evaluation at two UK sites. Urban Climate, 2016, 18, 1-32.	5.7	83
7	Multi-Scale Sensible Heat Fluxes in the Suburban Environment from Large-Aperture Scintillometry and Eddy Covariance. Boundary-Layer Meteorology, 2014, 152, 65-89.	2.3	41
8	Developing a Research Strategy to Better Understand, Observe, and Simulate Urban Atmospheric Processes at Kilometer to Subkilometer Scales. Bulletin of the American Meteorological Society, 2017, 98, ES261-ES264.	3.3	40
9	Direct observations of CO2 emission reductions due to COVID-19 lockdown across European urban districts. Science of the Total Environment, 2022, 830, 154662.	8.0	37
10	Assessing the impact of changes in surface cover, human behaviour and climate on energy partitioning across Greater London. Landscape and Urban Planning, 2017, 165, 142-161.	7.5	36
11	Attribution and mitigation of heat wave-induced urban heat storage change. Environmental Research Letters, 2017, 12, 114007.	5.2	35
12	Scintillometry in urban and complex environments: a review. Measurement Science and Technology, 2017, 28, 064005.	2.6	34
13	Wind observations above an urban river using a new lidar technique, scintillometry and anemometry. Science of the Total Environment, 2013, 442, 527-533.	8.0	33
14	Evaluation of the Surface Urban Energy and Water Balance Scheme (SUEWS) at a Dense Urban Site in Shanghai: Sensitivity to Anthropogenic Heat and Irrigation. Journal of Hydrometeorology, 2018, 19, 1983-2005.	1.9	29
15	Spatial Modeling of Local cale Biogenic and Anthropogenic Carbon Dioxide Emissions in Helsinki. Journal of Geophysical Research D: Atmospheres, 2019, 124, 8363-8384.	3.3	27
16	Infrared and millimetre-wave scintillometry in the suburban environment – Part 2: Large-area sensible and latent heat fluxes. Atmospheric Measurement Techniques, 2015, 8, 1407-1424.	3.1	26
17	A critical revision of the estimation of the latent heat flux from twoâ€wavelength scintillometry. Quarterly Journal of the Royal Meteorological Society, 2013, 139, 1912-1922.	2.7	23
18	Upscaling Tundra CO ₂ Exchange from Chamber to Eddy Covariance Tower. Arctic, Antarctic, and Alpine Research, 2013, 45, 275-284.	1.1	22

HELEN C WARD

#	Article	IF	CITATIONS
19	Spatial and temporal patterns of surface–atmosphere energy exchange in a dense urban environment using scintillometry. Quarterly Journal of the Royal Meteorological Society, 2017, 143, 817-833.	2.7	22
20	Infrared and millimetre-wave scintillometry in the suburban environment – Part 1: Structure parameters. Atmospheric Measurement Techniques, 2015, 8, 1385-1405.	3.1	21
21	Sensitivity of Surface Urban Energy and Water Balance Scheme (SUEWS) to downscaling of reanalysis forcing data. Urban Climate, 2018, 23, 36-52.	5.7	21
22	Urban signals in high-resolution weather and climate simulations: role of urban land-surface characterisation. Theoretical and Applied Climatology, 2020, 142, 701-728.	2.8	21
23	Foehn–cold pool interactions in the Inn Valley during PIANO IOP2. Quarterly Journal of the Royal Meteorological Society, 2020, 146, 1232-1263.	2.7	19
24	Aerodynamic roughness variation with vegetation: analysis in a suburban neighbourhood and a city park. Urban Ecosystems, 2018, 21, 227-243.	2.4	17
25	Variability of urban surface temperatures and implications for aerodynamic energy exchange in unstable conditions. Quarterly Journal of the Royal Meteorological Society, 2018, 144, 1719-1741.	2.7	17
26	Largeâ€eddy simulation of foehn–cold pool interactions in the InnÂValley during PIANO IOP 2. Quarterly Journal of the Royal Meteorological Society, 2021, 147, 944-982.	2.7	17
27	Studying Urban Climate and Air Quality in the Alps: The Innsbruck Atmospheric Observatory. Bulletin of the American Meteorological Society, 2020, 101, E488-E507.	3.3	17
28	Environmental and Vegetation Drivers of Seasonal CO2 Fluxes in a Sub-arctic Forest–Mire Ecotone. Ecosystems, 2014, 17, 377-393.	3.4	15
29	Transpiration from subarctic deciduous woodlands: Environmental controls and contribution to ecosystem evapotranspiration. Ecohydrology, 2020, 13, e2190.	2.4	12
30	Effects of Non-Uniform Crosswind Fields on Scintillometry Measurements. Boundary-Layer Meteorology, 2011, 141, 143-163.	2.3	10
31	Impact of temporal resolution of precipitation forcing data on modelled urbanâ€atmosphere exchanges and surface conditions. International Journal of Climatology, 2018, 38, 649-662.	3.5	8
32	On the exchange of sensible and latent heat between the atmosphere and melting snow. Agricultural and Forest Meteorology, 2018, 252, 167-174.	4.8	7
33	Cold-Air Pool Processes in the Inn Valley During Föhn: A Comparison of Four Cases During the PIANO Campaign. Boundary-Layer Meteorology, 2022, 182, 335-362.	2.3	7
34	A Collaborative Effort to Better Understand, Measure, and Model Atmospheric Exchange Processes over Mountains. Bulletin of the American Meteorological Society, 2022, 103, E1282-E1295.	3.3	7
35	Quantifying Turbulence Heterogeneity in a Vineyard Using Eddy-Covariance and Scintillometer Measurements. Boundary-Layer Meteorology, 2022, 184, 479-504.	2.3	6
36	Influence of grid resolution of largeâ€eddy simulations on foehnâ€cold pool interaction. Quarterly Journal of the Royal Meteorological Society, 2022, 148, 1840-1863.	2.7	5

HELEN C WARD

#	Article	IF	CITATIONS
37	Urban Measurements and Their Interpretation. Springer Handbooks, 2021, , 1391-1423.	0.6	4
38	Energy and mass exchange at an urban site in mountainous terrain – the Alpine city of Innsbruck. Atmospheric Chemistry and Physics, 2022, 22, 6559-6593.	4.9	4
39	Reply to 'Drivers of the 2013/14 winter floods in the UK'. Nature Climate Change, 2015, 5, 491-492.	18.8	2
40	Scintillometers. Springer Handbooks, 2021, , 969-997.	0.6	2
41	Air Quality of the Urban Alps: Innsbruck's new observatory. Bulletin of the American Meteorological Society, 2020, 101, 492-498.	3.3	0