
Jianping Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/185959/publications.pdf Version: 2024-02-01

LIANDING WANG

#	Article	IF	CITATIONS
1	Genomic insights into the recent chromosome reduction of autopolyploid sugarcane Saccharum spontaneum. Nature Genetics, 2022, 54, 885-896.	9.4	33
2	Natural polymorphisms in a pair of NSP2 homoeologs can cause loss of nodulation in peanut. Journal of Experimental Botany, 2021, 72, 1104-1118.	2.4	15
3	Development and characterization of a Napier grass (<i>Cenchrus purpureus</i> Schumach) mapping population for floweringâ€time―and biomassâ€related traits reveal individuals with exceptional potential and hybrid vigor. GCB Bioenergy, 2021, 13, 1561-1575.	2.5	5
4	Advances in Genomics Approaches Shed Light on Crop Domestication. Plants, 2021, 10, 1571.	1.6	1
5	Characterization of a Saccharum spontaneum with a basic chromosome number of x = 10 provides new insights on genome evolution in genus Saccharum. Theoretical and Applied Genetics, 2020, 133, 187-199.	1.8	42
6	Genome assembly provides insights into the genome evolution and flowering regulation of orchardgrass. Plant Biotechnology Journal, 2020, 18, 373-388.	4.1	51
7	Over-expression of poplar NAC15 gene enhances wood formation in transgenic tobacco. BMC Plant Biology, 2020, 20, 12.	1.6	18
8	Deciphering the Role of Stay-Green Trait to Mitigate Terminal Heat Stress in Bread Wheat. Agronomy, 2020, 10, 1001.	1.3	10
9	Peanut FAD2 Genotype and Growing Location Interactions Significantly Affect the Level of Oleic Acid in Seeds. JAOCS, Journal of the American Oil Chemists' Society, 2020, 97, 1001-1010.	0.8	6
10	The application of CRISPR/Cas9 in hairy roots to explore the functions of AhNFR1 and AhNFR5 genes during peanut nodulation. BMC Plant Biology, 2020, 20, 417.	1.6	40
11	Identifying chromosomal introgressions from a wild species Arachis diogoi into interspecific peanut hybrids. Plant Breeding, 2020, 139, 969-976.	1.0	1
12	Isolation, Characterization, and Complete Genome Sequence of a Bradyrhizobium Strain Lb8 From Nodules of Peanut Utilizing Crack Entry Infection. Frontiers in Microbiology, 2020, 11, 93.	1.5	13
13	Transcriptome analysis of salt-responsive and wood-associated NACs in Populus simonii ×ÂPopulus nigra. BMC Plant Biology, 2020, 20, 317.	1.6	15
14	Molecular Basis of Root Nodule Symbiosis between Bradyrhizobium and â€~Crack-Entry' Legume Groundnut (Arachis hypogaea L.). Plants, 2020, 9, 276.	1.6	39
15	Mapping quantitative trait loci (QTLs) and estimating the epistasis controlling stem rot resistance in cultivated peanut (Arachis hypogaea). Theoretical and Applied Genetics, 2020, 133, 1201-1212.	1.8	24
16	Genomeâ€wide association study of multiple yield traits in a diversity panel of polyploid sugarcane (<i>Saccharum</i> spp.). Plant Genome, 2020, 13, e20006.	1.6	27
17	Molecular detection of sugarcane striate virus and sugarcane white streak virus and their prevalence in the Miami World Collection of sugarcane and related grasses. Plant Pathology, 2020, 69, 1060-1069.	1.2	4
18	Comparison of SNP Calling Pipelines and NGS Platforms to Predict the Genomic Regions Harboring Candidate Genes for Nodulation in Cultivated Peanut. Frontiers in Genetics, 2020, 11, 222.	1.1	7

JIANPING WANG

#	Article	IF	CITATIONS
19	Methods for Target Enrichment Sequencing via Probe Capture in Legumes. Methods in Molecular Biology, 2020, 2107, 199-231.	0.4	2
20	Target enrichment sequencing of 307 germplasm accessions identified ancestry of ancient and modern hybrids and signatures of adaptation and selection in sugarcane (<i>Saccharum</i> spp.), a †sweet' crop with †bitter' genomes. Plant Biotechnology Journal, 2019, 17, 488-498.	4.1	33
21	Development of an Axiom Sugarcane100K SNP array for genetic map construction and QTL identification. Theoretical and Applied Genetics, 2019, 132, 2829-2845.	1.8	41
22	A novel effect of glycine on the growth and starch biosynthesis of storage root in sweetpotato (Ipomoea batatas Lam.). Plant Physiology and Biochemistry, 2019, 144, 395-403.	2.8	6
23	The bracteatus pineapple genome and domestication of clonally propagated crops. Nature Genetics, 2019, 51, 1549-1558.	9.4	60
24	Whole chloroplast genome and gene locus phylogenies reveal the taxonomic placement and relationship of Tripidium (Panicoideae: Andropogoneae) to sugarcane. BMC Evolutionary Biology, 2019, 19, 33.	3.2	48
25	The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nature Genetics, 2019, 51, 865-876.	9.4	398
26	Evaluation of genomic selection and marker-assisted selection in Miscanthus and energycane. Molecular Breeding, 2019, 39, 1.	1.0	20
27	Identifying loci controlling fiber composition in polyploid sugarcane (Saccharum spp.) through genome-wide association study. Industrial Crops and Products, 2019, 130, 598-605.	2.5	16
28	Genome-Wide Association Studies Identified Resistance Loci to Orange Rust and Yellow Leaf Virus Diseases in Sugarcane (<i>Saccharum</i> spp.). Phytopathology, 2019, 109, 623-631.	1.1	34
29	Pedigree, marker recruitment, and genetic diversity of modern sugarcane cultivars in China and the United States. Euphytica, 2018, 214, 1.	0.6	5
30	Editorial: Molecular and Cellular Mechanisms of the Legume-Rhizobia Symbiosis. Frontiers in Plant Science, 2018, 9, 1839.	1.7	12
31	New insights into the evolution and functional divergence of the SWEET family in Saccharum based on comparative genomics. BMC Plant Biology, 2018, 18, 270.	1.6	42
32	Comprehensively Characterizing the Cytological Features of Saccharum spontaneum by the Development of a Complete Set of Chromosome-Specific Oligo Probes. Frontiers in Plant Science, 2018, 9, 1624.	1.7	42
33	Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L Nature Genetics, 2018, 50, 1565-1573.	9.4	463
34	Surveying the genome and constructing a high-density genetic map of napiergrass (Cenchrus) Tj ETQq0 0 0 rg	3T /Qverloc	k 10 Tf 50 14
35	Developing and validating microsatellite markers in elephant grass (Pennisetum purpureum S.). Euphytica, 2018, 214, 1.	0.6	2

JIANPING WANG

#	Article	IF	CITATIONS
37	Morphological and Genetic Characterization of Nonâ€Nodulating Peanut Recombinant Inbred Lines. Crop Science, 2018, 58, 540-550.	0.8	11
38	Molecular dissection of sugar related traits and it's attributes in Saccharum spp. hybrids. Euphytica, 2018, 214, 1.	0.6	4
39	Heritability of spotted wilt resistance in a Floridaâ€EPâ"¢ "113â€â€derived peanut (<i>Arachis hypogaea</i>) population. Plant Breeding, 2018, 137, 614-620.	1.0	0
40	Molecular characterization of genetic basis of <i>Sugarcane Yellow Leaf Virus</i> (<scp>SCYLV</scp>) resistance in <i>Saccharum</i> spp. hybrid. Plant Breeding, 2018, 137, 598-604.	1.0	21
41	Development and Applications of a High Throughput Genotyping Tool for Polyploid Crops: Single Nucleotide Polymorphism (SNP) Array. Frontiers in Plant Science, 2018, 9, 104.	1.7	89
42	Potentials, Challenges, and Genetic and Genomic Resources for Sugarcane Biomass Improvement. Frontiers in Plant Science, 2018, 9, 151.	1.7	28
43	Development and Applications of Chromosome-Specific Cytogenetic BAC-FISH Probes in S. spontaneum. Frontiers in Plant Science, 2018, 9, 218.	1.7	23
44	Identifying Quantitative Trait Loci (QTLs) and Developing Diagnostic Markers Linked to Orange Rust Resistance in Sugarcane (Saccharum spp.). Frontiers in Plant Science, 2018, 9, 350.	1.7	47
45	Refining a major QTL controlling spotted wilt disease resistance in cultivated peanut (Arachis) Tj ETQq1 1 0.7843 Genetics, 2018, 19, 17.	14 rgBT / 2.7	Overlock 10 10
46	Integrated omics data of two annual ryegrass (Lolium multiflorum L.) genotypes reveals core metabolic processes under drought stress. BMC Plant Biology, 2018, 18, 26.	1.6	30
47	EST-SSR marker characterization based on RNA-sequencing of Lolium multiflorum and cross transferability to related species. Molecular Breeding, 2018, 38, 1.	1.0	15
48	Transcriptome profiles reveal gene regulation of peanut (Arachis hypogaea L.) nodulation. Scientific Reports, 2017, 7, 40066.	1.6	42
49	Target enrichment sequencing in cultivated peanut (Arachis hypogaea L.) using probes designed from transcript sequences. Molecular Genetics and Genomics, 2017, 292, 955-965.	1.0	17
50	Characterization of ERF76 promoter cloned from Populus simoniiÂ×ÂP. nigra. Acta Physiologiae Plantarum, 2017, 39, 1.	1.0	10
51	Constructing high-density genetic maps for polyploid sugarcane (Saccharum spp.) and identifying quantitative trait loci controlling brown rust resistance. Molecular Breeding, 2017, 37, 1.	1.0	34
52	Direct organogenesis from cotyledonary node explants suitable for Agrobacterium-mediated transformation in peanut (Arachis hypogaea L.). Plant Cell, Tissue and Organ Culture, 2017, 128, 161-175.	1.2	15
53	Mining sequence variations in representative polyploid sugarcane germplasm accessions. BMC Genomics, 2017, 18, 594.	1.2	46
54	Enriching Genomic Resources and Marker Development from Transcript Sequences of <i>Jatropha curcas</i> for Microgravity Studies. International Journal of Genomics, 2017, 2017, 1-14.	0.8	7

JIANPING WANG

#	Article	lF	CITATIONS
55	Comparative proteomic analyses reveal the proteome response to short-term drought in Italian ryegrass (Lolium multiflorum). PLoS ONE, 2017, 12, e0184289.	1.1	13
56	Comprehensive transcriptome analysis reveals distinct regulatory programs during vernalization and floral bud development of orchardgrass (Dactylis glomerata L.). BMC Plant Biology, 2017, 17, 216.	1.6	28
57	Transcriptional Profiles of Drought-Related Genes in Modulating Metabolic Processes and Antioxidant Defenses in Lolium multiflorum. Frontiers in Plant Science, 2016, 7, 519.	1.7	81
58	Natural Allelic Variations in Highly Polyploidy Saccharum Complex. Frontiers in Plant Science, 2016, 7, 804.	1.7	40
59	Comparative structural analysis of Bru1 region homeologs in Saccharum spontaneum and S. officinarum. BMC Genomics, 2016, 17, 446.	1.2	8
60	Construction of high-density genetic linkage map and identification of flowering-time QTLs in orchardgrass using SSRs and SLAF-seq. Scientific Reports, 2016, 6, 29345.	1.6	48
61	Identification of major QTLs underlying tomato spotted wilt virus resistance in peanut cultivar Florida-EPTM â€~113'. BMC Genetics, 2016, 17, 128.	2.7	31
62	Genome-Wide Analysis of NBS-LRR Genes in Sorghum Genome Revealed Several Events Contributing to NBS-LRR Gene Evolution in Grass Species. Evolutionary Bioinformatics, 2016, 12, EBO.S36433.	0.6	34
63	Molecular marker development from transcript sequences and germplasm evaluation for cultivated peanut (Arachis hypogaea L.). Molecular Genetics and Genomics, 2016, 291, 363-381.	1.0	21
64	Genetic linkage map of <i><scp>L</scp>olium multiflorum</i> Lam. constructed from a BC ₁ population derived from an interspecific hybridization, <i><scp>L</scp>.Amultiflorum</i> AA—A <i><scp>Lolium</scp>Atemulentum</i> LAA—A <i><scp>L</scp>.Atemulentum</i> . Grassland Science, 2014, 60, 142-149.	0.6	3
65	Identification of QTLs associated with oil content and mapping FAD2 genes and their relative contribution to oil quality in peanut (Arachis hypogaeaL.). BMC Genetics, 2014, 15, 133.	2.7	117
66	Phenotypic characterization of the Miami World Collection of sugarcane (Saccharum spp.) and related grasses for selecting a representative core. Genetic Resources and Crop Evolution, 2014, 61, 1581-1596.	0.8	25
67	Promoting Utilization of Saccharum spp. Genetic Resources through Genetic Diversity Analysis and Core Collection Construction. PLoS ONE, 2014, 9, e110856.	1.1	51
68	Carbon partitioning in sugarcane (Saccharum species). Frontiers in Plant Science, 2013, 4, 201.	1.7	123