List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/18591/publications.pdf Version: 2024-02-01

XIN-HUA HU

#	Article	IF	CITATIONS
1	Deep Learning of Morphologic Correlations To Accurately Classify CD4+ and CD8+ T Cells by Diffraction Imaging Flow Cytometry. Analytical Chemistry, 2022, , .	6.5	4
2	Analysis of polarized diffraction images of human red blood cells: a numerical study. Biomedical Optics Express, 2022, 13, 1161.	2.9	2
3	A Machine Learning Based Framework for Verification and Validation of Massive Scale Image Data. IEEE Transactions on Big Data, 2021, 7, 451-467.	6.1	20
4	Multiparameter Spectrophotometry Platform for Turbid Sample Measurement by Robust Solutions of Radiative Transfer Problems. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-10.	4.7	5
5	Robustness of inverse solutions for radiative transfer parameters from light signals measured with different detection configurations. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 274, 107883.	2.3	1
6	Deep learning of diffraction image patterns for accurate classification of five cell types. Journal of Biophotonics, 2020, 13, e201900242.	2.3	5
7	Machine learning of diffraction image patterns for accurate classification of cells modeled with different nuclear sizes. Journal of Biophotonics, 2020, 13, e202000036.	2.3	7
8	Spectral determination of μa, μs and g from single and multiple scattering signals with one optically thick sample. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 245, 106868.	2.3	4
9	Testing Scientific Software with Invariant Relations: A Case Study. , 2019, , .		1
10	Rapid classification of micron-sized particles of sphere, cylinders and ellipsoids by diffraction image parameters combined with scattered light intensity. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 224, 453-459.	2.3	8
11	Development and evaluation of realistic optical cell models for rapid and labelâ€free cell assay by diffraction imaging. Journal of Biophotonics, 2019, 12, e201800287.	2.3	8
12	Spectral determination of μa, μs and g of one thick turbid sample from three scattered light signals. , 2019, , .		0
13	CNN based classification of 5 cell types by diffraction images. , 2019, , .		0
14	Quantitative characterization of turbidity by radiative transfer based reflectance imaging. Biomedical Optics Express, 2018, 9, 2081.	2.9	9
15	Profiling pleural effusion cells by a diffraction imaging method. , 2018, , .		0
16	Stochastic model for quantifying effect of surface roughness on light reflection by diffuse reflectance standards. Optical Engineering, 2018, 57, 1.	1.0	1
17	Building an SVM Classifier for Automated Selection of Big Data. , 2017, , .		4
18	Building a Deep Learning Classifier for Enhancing a Biomedical Big Data Service. , 2017, , .		5

XIN-HUA HU

#	Article	IF	CITATIONS
19	Application of metamorphic testing monitored by test adequacy in a Monte Carlo simulation program. Software Quality Journal, 2017, 25, 841-869.	2.2	7
20	Validating a Deep Learning Framework by Metamorphic Testing. , 2017, , .		39
21	Pattern recognition and classification of two cancer cell lines by diffraction imaging at multiple pixel distances. Pattern Recognition, 2017, 61, 234-244.	8.1	31
22	Resolving power of diffraction imaging with an objective: a numerical study. Optics Express, 2017, 25, 9628.	3.4	5
23	Quantitative analysis and comparison of 3D morphology between viable and apoptotic MCF-7 breast cancer cells and characterization of nuclear fragmentation. PLoS ONE, 2017, 12, e0184726.	2.5	16
24	An application of metamorphic testing for testing scientific software. , 2016, , .		19
25	A Framework for Ensuring the Quality of a Big Data Service. , 2016, , .		12
26	Spectrophotometric determination of turbid optical parameters without using an integrating sphere. Applied Optics, 2016, 55, 2079.	2.1	10
27	Quantitative assessment of image motion blur in diffraction images of moving biological cells. Optical Engineering, 2016, 55, 023103.	1.0	1
28	Realistic optical cell modeling and diffraction imaging simulation for study of optical and morphological parameters of nucleus. Optics Express, 2016, 24, 366.	3.4	11
29	Research on Optimization of GLCM Parameter in Cell Classification. , 2016, , .		0
30	A new assessment model for tumor heterogeneity analysis with [18]F-FDG PET images. EXCLI Journal, 2016, 15, 75-84.	0.7	1
31	Comparison study of distinguishing cancerous and normal prostate epithelial cells by confocal and polarization diffraction imaging. Journal of Biomedical Optics, 2015, 21, 071102.	2.6	17
32	Acquisition of cross-polarized diffraction images and study of blurring effect by one time-delay-integration camera. Applied Optics, 2015, 54, 5223.	2.1	10
33	A quantitative method for measurement of HL-60 cell apoptosis based on diffraction imaging flow cytometry technique. Biomedical Optics Express, 2014, 5, 2172.	2.9	17
34	Analysis of diffraction imaging in non-conjugate configurations. Optics Express, 2014, 22, 31568.	3.4	18
35	Polarization imaging and classification of <scp>J</scp> urkat T and <scp>R</scp> amos B cells using a flow cytometer. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2014, 85, 817-826.	1.5	30
36	Polarization imaging and classification of Jurkat T and Ramos B cells using a flow cytometer. , 2014, 85, 986-986.		1

#	Article	IF	CITATIONS
37	Feasibility Study of Dual Energy Radiographic Imaging for Target Localization in Radiotherapy for Lung Tumors. PLoS ONE, 2014, 9, e108823.	2.5	3
38	Fast method for inverse determination of optical parameters from two measured signals. Optics Letters, 2013, 38, 2095.	3.3	12
39	Analysis of cellular objects through diffraction images acquired by flow cytometry. Optics Express, 2013, 21, 24819.	3.4	33
40	Study of low speed flow cytometry for diffraction imaging with different chamber and nozzle designs. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2013, 83, 1027-1033.	1.5	19
41	Correlating the light scattering pattern of a biological cell to its mitochondrial properties using a Gabor filter technique. Proceedings of SPIE, 2012, , .	0.8	1
42	3D cell feature measurement with a diffraction imaging method. , 2012, , .		0
43	Extraction of microsphere size from diffraction images with an STFT method. , 2012, , .		2
44	A novel method of diffraction imaging flow cytometry for sizing microspheres. Optics Express, 2012, 20, 22245.	3.4	25
45	A model of cellular decision making in photodynamic therapy of cancer. , 2012, , .		2
46	Comparative study of 3D morphology and functions on genetically engineered mouse melanoma cells. Integrative Biology (United Kingdom), 2012, 4, 1428.	1.3	31
47	Modeling of Oxygen Transport and Cell Killing in Typeâ€II Photodynamic Therapy. Photochemistry and Photobiology, 2012, 88, 969-977.	2.5	9
48	Modeling of PDT kinetics in cell killing. , 2011, , .		1
49	Label-free classification of cultured cells through diffraction imaging. Biomedical Optics Express, 2011, 2, 1717.	2.9	48
50	Metamorphic testing of a Monte Carlo modeling program. , 2011, , .		13
51	Rapid analysis of white blood cells with diffraction imaging flow cytometry. , 2011, , .		1
52	Study of cell classification with a diffraction imaging flow cytometer method. Proceedings of SPIE, 2011, , .	0.8	1
53	Self-Checked Metamorphic Testing of an Image Processing Program. , 2010, , .		21
54	Angle-resolved Light Scattering Study of NALM-6 and HL-60 Cells for White Blood Cell Differentiation. , 2010, , .		0

#	Article	IF	CITATIONS
55	Diffraction Imaging Flow Cytometric and 3D Morphological Analysis of Three Cell Lines. , 2010, , .		0
56	A higher order diffusion model for three-dimensional photon migration and image reconstruction in optical tomography. Physics in Medicine and Biology, 2009, 54, 67-90.	3.0	42
57	Diffraction imaging of spheres and melanoma cells with a microscope objective. Journal of Biophotonics, 2009, 2, 521-527.	2.3	39
58	Development of a diffraction imaging flow cytometer. Optics Letters, 2009, 34, 2985.	3.3	65
59	Study of 3D cell morphology and effect on light scattering distribution. Proceedings of SPIE, 2009, , .	0.8	2
60	Study of 3D cell morphology and effect on light scattering distribution. , 2009, , .		3
61	Validity of a closedâ€form diffusion solution in approximation for reflectance imaging with an oblique beam of arbitrary profile. Medical Physics, 2008, 35, 3979-3987.	3.0	3
62	Simulations of Light Scattering from B-cells with Inhomogeneous Nuclei Using a Improved FDTD Program. , 2008, , .		0
63	Noninvasive Determination of Optical Parameters from One Reflectance Image and Extension to Depth-Resolving. , 2008, , .		0
64	Numerical study of reflectance imaging using a parallel Monte Carlo method. Medical Physics, 2007, 34, 2939-2948.	3.0	15
65	Angle-resolved Mueller matrix study of light scattering by B-cells at three wavelengths of 442, 633, and 850â€,nm. Journal of Biomedical Optics, 2007, 12, 034032.	2.6	42
66	MODELING OF LIGHT SCATTERING BY SINGLE RED BLOOD CELLS WITH THE FDTD METHOD. , 2007, , 213-242.		3
67	Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm. Physics in Medicine and Biology, 2006, 51, 1479-1489.	3.0	228
68	A primary method for determination of optical parameters of turbid samples and application to intralipid between 550 and 1630nm. Optics Express, 2006, 14, 7420.	3.4	78
69	Efficient delivery of small interfering RNA to plant cells by a nanosecond pulsed laser-induced stress wave for posttranscriptional gene silencing. Plant Science, 2006, 171, 375-381.	3.6	31
70	Effect of detailed cell structure on light scattering distribution: FDTD study of a B-cell with 3D structure constructed from confocal images. Journal of Quantitative Spectroscopy and Radiative Transfer, 2006, 102, 25-36.	2.3	60
71	Determination of Intracellular Distributions of Refractive Index of B-cells and HL60 cells at 442, 633 and 850nm. , 2006, , .		0

72 Determination of Optical Parameters through Light Scattering Study: B-lymphocytes. , 2006, , .

0

XIN-HUA HU

#	Article	IF	CITATIONS
73	Modeling of the Internal Optical Structure of the Nuclei of B-cells. , 2006, , .		1
74	3D Reconstruction of B-lymphocytes with Confocal Images and Parallel FDTD Simulations of Light Scattering. , 2006, , .		0
75	Bulk tissue optical parameters of porcine skin dermis at 8 wavelengths from 325 to 1550nm. , 2005, , .		Ο
76	Multivariate analysis of Monte Carlo generated images for diagnosis of dysplastic lesions. , 2005, , .		2
77	An ultrasonic device for source to skin surface distance measurement in patient setup. International Journal of Radiation Oncology Biology Physics, 2005, 61, 1587-1589.	0.8	5
78	Modeling of a Type II Photofrin-mediated Photodynamic Therapy Process in a Heterogeneous Tissue Phantom. Photochemistry and Photobiology, 2005, 81, 1460.	2.5	52
79	Simulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method. Journal of Biomedical Optics, 2005, 10, 024022.	2.6	97
80	Quantitative modeling of tissue images using a parallel Monte Carlo method. , 2005, , .		3
81	Determination of refractive indices of porcine skin tissues and Intralipid at eight wavelengths between 325 and 1557 nm. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2005, 22, 1151.	1.5	84
82	Evaluation of a parallel FDTD code and application to modeling of light scattering by deformed red blood cells. Optics Express, 2005, 13, 5279.	3.4	43
83	Bulk optical parameters of porcine skin dermis at eight wavelengths from 325 to 1557 nm. Optics Letters, 2005, 30, 412.	3.3	59
84	Simulation of light scattering by a pressure deformed red blood cell with a parallel FDTD method. , 2005, , .		0
85	Imaging Based Tissue Optics: Parallel Monte Carlo Modeling and Phantom Measurements. , 2005, , .		Ο
86	Photosensitizers in clinical PDT. Photodiagnosis and Photodynamic Therapy, 2004, 1, 27-42.	2.6	862
87	Photodynamic therapy for chest wall recurrence from breast cancer. Photodiagnosis and Photodynamic Therapy, 2004, 1, 157-171.	2.6	34
88	Modeling of Skin Tissue Ablation by Nanosecond Pulses From Ultraviolet to Near-Infrared and Comparison With Experimental Results. IEEE Journal of Quantum Electronics, 2004, 40, 69-77.	1.9	19
89	Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm. Physics in Medicine and Biology, 2003, 48, 4165-4172.	3.0	319
90	Effect of surface roughness on determination of bulk tissue optical parameters. Optics Letters, 2003, 28, 2204.	3.3	30

#	Article	IF	CITATIONS
91	In Vivo Study of Intradermal Focusing for Tattoo Removal. Lasers in Medical Science, 2002, 17, 154-164.	2.1	12
92	Optical properties of porcine skin dermis between 900 nm and 1500 nm. Physics in Medicine and Biology, 2001, 46, 167-181.	3.0	111
93	Mechanism study of porcine skin ablation by nanosecond laser pulses at 1064, 532, 266, and 213 nm. IEEE Journal of Quantum Electronics, 2001, 37, 322-328.	1.9	17
94	Tattoo removal in micropigs with low-energy pulses from a Q-switched Nd:YAG laser at 1064 nm. , 2001, 4244, 55.		0
95	Quasi-elastic light scattering of laser-trapped biological particles. , 2000, , .		1
96	Modeling of the rough-interface effect on a converging light beam propagating in a skin tissue phantom. Applied Optics, 2000, 39, 5890.	2.1	46
97	Surface ablation of porcine skin tissue using nanosecond laser pulses at 1064 nm. , 1997, , .		Ο
98	<title>Far-ultraviolet absorption spectra of porcine and human corneas</title> . , 1997, 2971, 46.		1
99	Study of corneal ablation with picosecond laser pulses at 211 nm and 263 nm. , 1996, 18, 373-380.		13
100	Efficient use of Q-switched lasers in the treatment of cutaneous lesions. , 1995, 2395, 586.		4
101	Dynamics of photoexcited carrier relaxation inC60films. Physical Review B, 1993, 48, 4929-4932.	3.2	24
102	Time-resolved thermoreflectivity of thin gold films and its dependence on the ambient temperature. Physical Review B, 1992, 45, 13819-13822.	3.2	33
103	The temperature dependence of the resistive response of superconducting Pb films upon picosecond optical excitation. Applied Physics A: Solids and Surfaces, 1991, 52, 155-159.	1.4	4
104	Transient electric field generated by nonequilibrium states in superconducting Pb films. Applied Physics Letters, 1991, 59, 3333-3335.	3.3	8
105	Quantitative understanding of skin tissue ablation from UV to NIR with a new plasma model. , 0, , .		0
106	Accurate simulation of light scattering by a red blood cell using the FDTD method. , 0, , .		0