
## Tatsuya Fukuta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1858521/publications.pdf Version: 2024-02-01



ΤΑΤΩΙΙΥΑ ΕΙΙΚΙΙΤΑ

| #  | Article                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Effective Anticancer Therapy by Combination of Nanoparticles Encapsulating Chemotherapeutic<br>Agents and Weak Electric Current. Biological and Pharmaceutical Bulletin, 2022, 45, 194-199.                                                              | 1.4  | 5         |
| 2  | Application and Utility of Liposomal Neuroprotective Agents and Biomimetic Nanoparticles for the<br>Treatment of Ischemic Stroke. Pharmaceutics, 2022, 14, 361.                                                                                          | 4.5  | 17        |
| 3  | Iontophoresis-mediated direct delivery of nucleic acid therapeutics, without use of carriers, to<br>internal organs via non-blood circulatory pathways. Journal of Controlled Release, 2022, 343, 392-399.                                               | 9.9  | 9         |
| 4  | Biomimetic Nanoparticle Drug Delivery Systems to Overcome Biological Barriers for Therapeutic Applications. Chemical and Pharmaceutical Bulletin, 2022, 70, 334-340.                                                                                     | 1.3  | 7         |
| 5  | Enhancement of cerebroprotective effects of lipid nanoparticles encapsulating FK506 on cerebral ischemia/reperfusion injury by particle size regulation. Biochemical and Biophysical Research Communications, 2022, 611, 53-59.                          | 2.1  | 2         |
| 6  | Suppression of Lipid Accumulation in 3T3-L1 Adipocytes by α-Tocopheryl Succinate. Biological and Pharmaceutical Bulletin, 2021, 44, 46-50.                                                                                                               | 1.4  | 3         |
| 7  | Leukocyte-Mimetic Liposomes Penetrate Into Tumor Spheroids and Suppress Spheroid Growth by Encapsulated Doxorubicin. Journal of Pharmaceutical Sciences, 2021, 110, 1701-1709.                                                                           | 3.3  | 10        |
| 8  | Overcoming thickened pathological skin in psoriasis via iontophoresis combined with tight<br>junction-opening peptide AT1002 for intradermal delivery of NF-κB decoy oligodeoxynucleotide.<br>International Journal of Pharmaceutics, 2021, 602, 120601. | 5.2  | 9         |
| 9  | Development of a novel antioxidant based on a dimeric dihydroisocoumarin derivative. Tetrahedron<br>Letters, 2021, 74, 153176.                                                                                                                           | 1.4  | 0         |
| 10 | A simple, fast, and orientation-controllable technology for preparing antibody-modified liposomes.<br>International Journal of Pharmaceutics, 2021, 607, 120966.                                                                                         | 5.2  | 5         |
| 11 | Development of Biomembrane–mimetic Nanoparticles to Overcome Endothelial Cell Layer for Treating<br>Ischemic Stroke. Membrane, 2021, 46, 306-311.                                                                                                        | 0.0  | 0         |
| 12 | Transdermal drug delivery by iontophoresis. Drug Delivery System, 2021, 36, 198-208.                                                                                                                                                                     | 0.0  | 1         |
| 13 | Enhancement of antioxidative activity of astaxanthin by combination with an antioxidant capable of forming intermolecular interactions. Free Radical Research, 2020, 54, 818-828.                                                                        | 3.3  | 7         |
| 14 | Characteristics of unique endocytosis induced by weak current for cytoplasmic drug delivery.<br>International Journal of Pharmaceutics, 2020, 576, 119010.                                                                                               | 5.2  | 11        |
| 15 | Low level electricity increases the secretion of extracellular vesicles from cultured cells.<br>Biochemistry and Biophysics Reports, 2020, 21, 100713.                                                                                                   | 1.3  | 34        |
| 16 | Release rate is a key variable affecting the therapeutic effectiveness of liposomal fasudil for the treatment of cerebral ischemia/reperfusion injury. Biochemical and Biophysical Research Communications, 2020, 531, 622-627.                          | 2.1  | 4         |
| 17 | Protective effect of high-affinity liposomes encapsulating astaxanthin against corneal disorder in the<br><i>in vivo</i> rat dry eye disease model. Journal of Clinical Biochemistry and Nutrition,<br>2020, 66, 224-232.                                | 1.4  | 14        |
| 18 | Noninvasive transdermal delivery of liposomes by weak electric current. Advanced Drug Delivery<br>Reviews, 2020, 154-155, 227-235.                                                                                                                       | 13.7 | 31        |

Τατςυγά Γυκυτά

| #  | Article                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Non-invasive delivery of biological macromolecular drugs into the skin by iontophoresis and its application to psoriasis treatment. Journal of Controlled Release, 2020, 323, 323-332.                                                                           | 9.9 | 39        |
| 20 | Protective Effect of Antioxidative Liposomes Co-encapsulating Astaxanthin and Capsaicin on<br>CCl <sub>4</sub> -Induced Liver Injury. Biological and Pharmaceutical Bulletin, 2020, 43,<br>1272-1274.                                                            | 1.4 | 2         |
| 21 | Weak Electric Current Treatment to Artificially Enhance Vascular Permeability in Embryonated Chicken Eggs. Biological and Pharmaceutical Bulletin, 2020, 43, 1729-1734.                                                                                          | 1.4 | 1         |
| 22 | Gut microbial metabolites of linoleic acid are metabolized by accelerated peroxisomal β-oxidation in<br>mammalian cells. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864,<br>1619-1628.                                         | 2.4 | 7         |
| 23 | Glycosylinositol phosphoceramide-specific phospholipase D activity catalyzes transphosphatidylation.<br>Journal of Biochemistry, 2019, 166, 441-448.                                                                                                             | 1.7 | 8         |
| 24 | Biological Functions of α-Tocopheryl Succinate. Journal of Nutritional Science and Vitaminology, 2019,<br>65, S104-S108.                                                                                                                                         | 0.6 | 6         |
| 25 | Engineering the Binding Kinetics of Synthetic Polymer Nanoparticles for siRNA Delivery.<br>Biomacromolecules, 2019, 20, 3648-3657.                                                                                                                               | 5.4 | 12        |
| 26 | Suppression of Cerebral Ischemia/Reperfusion Injury by Efficient Release of Encapsulated Ifenprodil<br>From Liposomes Under Weakly Acidic pH Conditions. Journal of Pharmaceutical Sciences, 2019, 108,<br>3823-3830.                                            | 3.3 | 5         |
| 27 | Applications of Liposomal Drug Delivery Systems to Develop Neuroprotective Agents for the Treatment of Ischemic Stroke. Biological and Pharmaceutical Bulletin, 2019, 42, 319-326.                                                                               | 1.4 | 33        |
| 28 | Leukocyte-mimetic liposomes possessing leukocyte membrane proteins pass through inflamed endothelial cell layer by regulating intercellular junctions. International Journal of Pharmaceutics, 2019, 563, 314-323.                                               | 5.2 | 14        |
| 29 | Efficacy of high-affinity liposomal astaxanthin on up-regulation of age-related markers induced by oxidative stress in human corneal epithelial cells. Journal of Clinical Biochemistry and Nutrition, 2019, 64, 27-35.                                          | 1.4 | 21        |
| 30 | Quantitative Analysis of Glycosylinositol Phosphoceramide and Phytoceramide 1-Phosphate in Vegetables. Journal of Nutritional Science and Vitaminology, 2019, 65, S175-S179.                                                                                     | 0.6 | 4         |
| 31 | Lysophosphatidic acid in medicinal herbs enhances prostaglandin E2 and protects against<br>indomethacin-induced gastric cell damage in vivo and in vitro. Prostaglandins and Other Lipid<br>Mediators, 2018, 135, 36-44.                                         | 1.9 | 16        |
| 32 | Co-administration of liposomal fasudil and tissue plasminogen activator ameliorated ischemic brain<br>damage in occlusion model rats prepared by photochemically induced thrombosis. Biochemical and<br>Biophysical Research Communications, 2018, 495, 873-877. | 2.1 | 20        |
| 33 | Carotenoid Stereochemistry Affects Antioxidative Activity of Liposomes Co-encapsulating Astaxanthin and Tocotrienol. Chemical and Pharmaceutical Bulletin, 2018, 66, 714-720.                                                                                    | 1.3 | 4         |
| 34 | Combination therapy with liposomal neuroprotectants and tissue plasminogen activator for treatment of ischemic stroke. FASEB Journal, 2017, 31, 1879-1890.                                                                                                       | 0.5 | 88        |
| 35 | Targeted delivery of anticancer drugs to tumor vessels by use of liposomes modified with a peptide<br>identified by phage biopanning with human endothelial progenitor cells. International Journal of<br>Pharmaceutics, 2017, 524, 364-372.                     | 5.2 | 23        |
| 36 | Usefulness of Liposomal Neuroprotectants for the Treatment of Ischemic Stroke. Oleoscience, 2017, 17, 359-366.                                                                                                                                                   | 0.0 | 0         |

Τατςυγά Γυκυτά

| #  | Article                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Targeted Therapy for Acute Autoimmune Myocarditis with Nano-Sized Liposomal FK506 in Rats. PLoS<br>ONE, 2016, 11, e0160944.                                                                | 2.5 | 14        |
| 38 | Neuroprotection against cerebral ischemia/reperfusion injury by intravenous administration of liposomal fasudil. International Journal of Pharmaceutics, 2016, 506, 129-137.               | 5.2 | 58        |
| 39 | Non-invasive evaluation of neuroprotective drug candidates for cerebral infarction by PET imaging of mitochondrial complex-I activity. Scientific Reports, 2016, 6, 30127.                 | 3.3 | 13        |
| 40 | Development of a liposomal drug delivery system for the treatment of ischemic stroke. Drug Delivery System, 2015, 30, 309-316.                                                             | 0.0 | 2         |
| 41 | Treatment of stroke with liposomal neuroprotective agents under cerebral ischemia conditions.<br>European Journal of Pharmaceutics and Biopharmaceutics, 2015, 97, 1-7.                    | 4.3 | 51        |
| 42 | Neuroprotective effect of nobiletin on cerebral ischemia–reperfusion injury in transient middle<br>cerebral artery-occluded rats. Brain Research, 2014, 1559, 46-54.                       | 2.2 | 76        |
| 43 | Real-Time Trafficking of PEGylated Liposomes in the Rodent Focal Brain Ischemia Analyzed by Positron<br>Emission Tomography. Artificial Organs, 2014, 38, 662-666.                         | 1.9 | 31        |
| 44 | Suppression in mice of immunosurveillance against PEGylated liposomes by encapsulated doxorubicin.<br>Journal of Controlled Release, 2014, 192, 167-173.                                   | 9.9 | 19        |
| 45 | Treatment of cerebral ischemiaâ€reperfusion injury with PEGylated liposomes encapsulating FK506.<br>FASEB Journal, 2013, 27, 1362-1370.                                                    | 0.5 | 68        |
| 46 | Nanoparticles accumulate in ischemic core and penumbra region even when cerebral perfusion is reduced. Biochemical and Biophysical Research Communications, 2013, 430, 1201-1205.          | 2.1 | 30        |
| 47 | A single injection of liposomal asialo-erythropoietin improves motor function deficit caused by cerebral ischemia/reperfusion. International Journal of Pharmaceutics, 2012, 439, 269-274. | 5.2 | 35        |
| 48 | Amelioration of cerebral ischemia–reperfusion injury based on liposomal drug delivery system with<br>asialo-erythropoietin. Journal of Controlled Release, 2012, 160, 81-87.               | 9.9 | 98        |