Stefan Müller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1858319/publications.pdf Version: 2024-02-01

STEFAN ΜΔ1/11FD

#	Article	lF	CITATIONS
1	Innovative laboratory unit for pre-testing of oxygen carriers for chemical-looping combustion. Biomass Conversion and Biorefinery, 2023, 13, 5095-5106.	4.6	4
2	Holistic assessment of oxygen carriers for chemical looping combustion based on laboratory experiments and validation in 80ÂkW pilot plant. Fuel Processing Technology, 2022, 231, 107249.	7.2	7
3	Simulation of a Pilot Scale Power-to-Liquid Plant Producing Synthetic Fuel and Wax by Combining Fischer–Tropsch Synthesis and SOEC. Energies, 2022, 15, 4134.	3.1	11
4	Syngas for biorefineries from thermochemical gasification of lignocellulosic fuels and residues—5Âyears' experience with an advanced dual fluidized bed gasifier design. Biomass Conversion and Biorefinery, 2021, 11, 2405-2442.	4.6	40
5	CO2 gasification of biogenic fuels in a dual fluidized bed reactor system. Biomass Conversion and Biorefinery, 2021, 11, 1101-1116.	4.6	9
6	Fischer-Tropsch products from biomass-derived syngas and renewable hydrogen. Biomass Conversion and Biorefinery, 2021, 11, 2281-2292.	4.6	46
7	Dual fluidized bed based technologies for carbon dioxide reduction — example hot metal production. Biomass Conversion and Biorefinery, 2021, 11, 159-168.	4.6	8
8	Conversion of CO2 during the DFB biomass gasification process. Biomass Conversion and Biorefinery, 2021, 11, 15-27.	4.6	10
9	Evaluation of biomass-based production of below zero emission reducing gas for the iron and steel industry. Biomass Conversion and Biorefinery, 2021, 11, 169-187.	4.6	17
10	Thermodynamic investigation of SNG production based on dual fluidized bed gasification of biogenic residues. Biomass Conversion and Biorefinery, 2021, 11, 95-110.	4.6	10
11	CPFD simulation of a dual fluidized bed cold flow model. Biomass Conversion and Biorefinery, 2021, 11, 189-203.	4.6	5
12	The impact of gasification temperature on the process characteristics of sorption enhanced reforming of biomass. Biomass Conversion and Biorefinery, 2020, 10, 925-936.	4.6	30
13	A kinetic model of carbonation and calcination of limestone for sorption enhanced reforming of biomass. International Journal of Greenhouse Gas Control, 2019, 90, 102787.	4.6	8
14	Assessment of correlations between tar and product gas composition in dual fluidized bed steam gasification for online tar prediction. Applied Energy, 2019, 238, 1138-1149.	10.1	40
15	CO2 gasification in a dual fluidized bed reactor system: Impact on the product gas composition. Fuel, 2019, 253, 1605-1616.	6.4	40
16	Dual fluidized bed gasification of biomass with selective carbon dioxide removal and limestone as bed material: A review. Renewable and Sustainable Energy Reviews, 2019, 107, 212-231.	16.4	77
17	Hydrocarbon production by continuous hydrodeoxygenation of liquid phase pyrolysis oil with biogenous hydrogen rich synthesis gas. Reaction Chemistry and Engineering, 2019, 4, 1195-1207.	3.7	5
18	Dual fluidized bed steam gasification: Change of product gas quality along the reactor height. Energy, 2019, 173, 1256-1272.	8.8	36

STEFAN MÃ¹/4 LLER

#	Article	IF	CITATIONS
19	Production of diesel from biomass and wind power – Energy storage by the use of the Fischer-Tropsch process. Biomass Conversion and Biorefinery, 2018, 8, 275-282.	4.6	22
20	Experimental Demonstration and Validation of Hydrogen Production Based on Gasification of Lignocellulosic Feedstock. ChemEngineering, 2018, 2, 61.	2.4	7
21	Influence of different bed material mixtures on dual fluidized bed steam gasification. Energy, 2018, 157, 957-968.	8.8	54
22	The impact of bed material cycle rate on in-situ CO2 removal for sorption enhanced reforming of different fuel types. Energy, 2018, 162, 35-44.	8.8	26
23	Fuel flexible gasification with an advanced 100†kW dual fluidized bed steam gasification pilot plant. Energy, 2018, 164, 329-343.	8.8	58
24	Experimental development of sorption enhanced reforming by the use of an advanced gasification test plant. International Journal of Hydrogen Energy, 2017, 42, 29694-29707.	7.1	50
25	Advanced dual fluidized bed steam gasification of wood and lignite with calcite as bed material. Korean Journal of Chemical Engineering, 2017, 34, 2548-2558.	2.7	51
26	Hydrogen from biomass: large-scale hydrogen production based on a dual fluidized bed steam gasification system. Biomass Conversion and Biorefinery, 2011, 1, 55-61.	4.6	33
27	Direct-write deposition with a focused electron beam. Microelectronic Engineering, 2006, 83, 784-787.	2.4	13
28	Sorption Enhanced Reforming of Different Fuel Types for the Production of a Hydrogen-Rich Reduction Gas. , 0, , .		2