Gary M Mawe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1857570/publications.pdf

Version: 2024-02-01

129	8,312	47	87
papers	citations	h-index	g-index
131	131	131	6213 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	2021 Workshop: Neurodegenerative Diseases in the Gut-Brain Axisâ€"Parkinson's Disease. Gastroenterology, 2022, 162, 1574-1582.	0.6	7
2	Direct and indirect mechanisms by which the gut microbiota influence host serotonin systems. Neurogastroenterology and Motility, 2022, 34, e14346.	1.6	22
3	Prokinetic actions of luminally acting 5â€HT ₄ receptor agonists. Neurogastroenterology and Motility, 2021, 33, e14026.	1.6	10
4	Daily, oral FMT for long-term maintenance therapy in ulcerative colitis: results of a single-center, prospective, randomized pilot study. BMC Gastroenterology, 2021, 21, 281.	0.8	61
5	No Gastrointestinal Dysmotility in Transgenic Mouse Models of Migraine. Headache, 2020, 60, 396-404.	1.8	1
6	Identification of novel loci controlling inflammatory bowel disease susceptibility utilizing the genetic diversity of wild-derived mice. Genes and Immunity, 2020, 21, 311-325.	2.2	9
7	Gut-derived serotonin contributes to bone deficits in colitis. Pharmacological Research, 2019, 140, 75-84.	3.1	18
8	Enteric neuroplasticity and dysmotility in inflammatory disease: key players and possible therapeutic targets. American Journal of Physiology - Renal Physiology, 2019, 317, G853-G861.	1.6	26
9	Altered gastrointestinal motility involving autoantibodies in the experimental autoimmune encephalomyelitis model of multiple sclerosis. Neurogastroenterology and Motility, 2018, 30, e13349.	1.6	45
10	Neuromuscular Function in the Biliary Tract., 2018, , 453-468.		0
11	Non-conventional features of peripheral serotonin signalling — the gut and beyond. Nature Reviews Gastroenterology and Hepatology, 2017, 14, 412-420.	8.2	187
12	Glucagon-like peptide-2 promotes gallbladder refilling via a TGR5-independent, GLP-2R-dependent pathway. Molecular Metabolism, 2017, 6, 503-511.	3.0	33
13	Anti-inflammatory roles of p38î± MAPK in macrophages are context dependent and require IL-10. Journal of Leukocyte Biology, 2017, 102, 1219-1227.	1.5	28
14	Review article: the many potential roles of intestinal serotonin (5â€hydroxytryptamine, 5â€ <scp>HT</scp>) signalling in inflammatory bowel disease. Alimentary Pharmacology and Therapeutics, 2017, 46, 569-580.	1.9	69
15	Chronic constipation. Nature Reviews Disease Primers, 2017, 3, 17095.	18.1	203
16	Regulation of Bone Metabolism by Serotonin. Advances in Experimental Medicine and Biology, 2017, 1033, 35-46.	0.8	46
17	News from the editors of Neurogastroenterology and Motility. Neurogastroenterology and Motility, 2016, 28, 1451-1451.	1.6	О
18	Fundamentals of Neurogastroenterology: Basic Science. Gastroenterology, 2016, 150, 1280-1291.	0.6	161

#	Article	lF	Citations
19	Protective Actions of Epithelial 5-Hydroxytryptamine 4 Receptors in Normal and Inflamed Colon. Gastroenterology, 2016, 151, 933-944.e3.	0.6	87
20	The Intrinsic Reflex Circuitry of the Inflamed Colon. Advances in Experimental Medicine and Biology, 2016, 891, 153-157.	0.8	7
21	Impact factor increases to its highest level ever. Neurogastroenterology and Motility, 2015, 27, 1051-1051.	1.6	1
22	Colitis-induced neuroplasticity disrupts motility in the inflamed and post-inflamed colon. Journal of Clinical Investigation, 2015, 125, 949-955.	3.9	73
23	(2 <i>R</i> ,3 <i>S</i> ,2'' <i>R</i> ,3'' <i>R</i>)-manniflar new gastrointestinal smooth muscle L-type calcium channel inhibitor, which underlies the spasmolytic properties of <i>Garcinia buchananii</i> stem bark extract. Journal of Smooth Muscle Research. 2014. 50. 48-65.	vanone, a 0.7	11
24	Emerging treatments in neurogastroenterology: a multidisciplinary working group consensus statement on opioidâ€induced constipation. Neurogastroenterology and Motility, 2014, 26, 1386-1395.	1.6	171
25	Roles of cholesterol and bile salts in the pathogenesis of gallbladder hypomotility and inflammation: cholecystitis is not caused by cystic duct obstruction. Neurogastroenterology and Motility, 2013, 25, 283-290.	1.6	18
26	Serotonin signalling in the gutâ€"functions, dysfunctions and therapeutic targets. Nature Reviews Gastroenterology and Hepatology, 2013, 10, 473-486.	8.2	784
27	Introducing our Associates. Neurogastroenterology and Motility, 2013, 25, 277-277.	1.6	0
28	Oxidative stress disrupts purinergic neuromuscular transmission in the inflamed colon. Journal of Physiology, 2013, 591, 3725-3737.	1.3	41
29	Histamine H3 Receptor Integrates Peripheral Inflammatory Signals in the Neurogenic Control of Immune Responses and Autoimmune Disease Susceptibility. PLoS ONE, 2013, 8, e62743.	1.1	16
30	The roles of purinergic signaling during gastrointestinal inflammation. Current Opinion in Pharmacology, 2012, 12, 659-666.	1.7	28
31	Activation of Colonic Mucosal 5-HT4 Receptors Accelerates Propulsive Motility and Inhibits Visceral Hypersensitivity. Gastroenterology, 2012, 142, 844-854.e4.	0.6	224
32	Activation of neuronal P2X7 receptor–pannexin-1 mediates death of enteric neurons during colitis. Nature Medicine, 2012, 18, 600-604.	15.2	369
33	Neuromuscular Function in the Biliary Tract. , 2012, , 847-859.		1
34	Plasticity of mouse enteric synapses mediated through endocannabinoid and purinergic signaling. Neurogastroenterology and Motility, 2012, 24, e113-24.	1.6	21
35	Disruption of gallbladder smooth muscle function is an early feature in the development of cholesterol gallstone disease. Neurogastroenterology and Motility, 2012, 24, e313-24.	1.6	45
36	The relationship between inflammation-induced neuronal excitability and disrupted motor activity in the guinea pig distal colon. Neurogastroenterology and Motility, 2011, 23, 673-e279.	1.6	37

3

#	Article	IF	Citations
37	The traditional antidiarrheal remedy, Garcinia buchananii stem bark extract, inhibits propulsive motility and fast synaptic potentials in the guinea pig distal colon. Neurogastroenterology and Motility, 2010, 22, 1332-1339.	1.6	29
38	Purinergic neuromuscular transmission is selectively attenuated in ulcerated regions of inflamed guinea pig distal colon. Journal of Physiology, 2010, 588, 847-859.	1.3	57
39	Hydrophobic bile salts inhibit gallbladder smooth muscle function via stimulation of GPBAR1 receptors and activation of K _{ATP} channels. Journal of Physiology, 2010, 588, 3295-3305.	1.3	103
40	Gastrointestinal Motility Monitor (GIMM). Journal of Visualized Experiments, 2010, , .	0.2	29
41	Mucosal Serotonin Signaling Is Altered in Chronic Constipation but Not in Opiate-Induced Constipation. American Journal of Gastroenterology, 2010, 105, 1173-1180.	0.2	47
42	Serotonin Signaling Is Altered in Irritable Bowel Syndrome With Diarrhea but Not in Functional Dyspepsia in Pediatric Age Patients. Gastroenterology, 2010, 139, 249-258.	0.6	139
43	The Effects of Daikenchuto (DKT) on Propulsive Motility in the Colon. Journal of Surgical Research, 2010, 164, 84-90.	0.8	13
44	Novel promoter and alternate transcription start site of the human serotonin reuptake transporter in intestinal mucosa. Neurogastroenterology and Motility, 2009, 21, 534.	1.6	13
45	Plasticity of enteric nerve functions in the inflamed and postinflamed gut. Neurogastroenterology and Motility, 2009, 21, 481-491.	1.6	80
46	Interstitial cells of Cajal in the gut: what makes them tick?. Journal of Physiology, 2009, 587, 4765-4765.	1.3	2
47	Serotonin Signaling in Diverticular Disease. Journal of Gastrointestinal Surgery, 2008, 12, 1439-1445.	0.9	92
48	lleitis alters neuronal and enteroendocrine signalling in guinea pig distal colon. Gut, 2007, 56, 186-194.	6.1	51
49	Persistent alterations to enteric neural signaling in the guinea pig colon following the resolution of colitis. American Journal of Physiology - Renal Physiology, 2007, 292, G482-G491.	1.6	69
50	Electrical properties of neurons in the intact rat major pelvic ganglion. Autonomic Neuroscience: Basic and Clinical, 2007, 134, 26-37.	1.4	9
51	IFN-γ and TNF-α decrease serotonin transporter function and expression in Caco2 cells. American Journal of Physiology - Renal Physiology, 2007, 292, G779-G784.	1.6	82
52	Morphological and physiological evidence for interstitial cell of Cajal-like cells in the guinea pig gallbladder. Journal of Physiology, 2007, 579, 487-501.	1.3	63
53	Synaptic plasticity in myenteric neurons of the guinea-pig distal colon: presynaptic mechanisms of inflammation-induced synaptic facilitation. Journal of Physiology, 2007, 581, 787-800.	1.3	40
54	From molecules to motion: altering neuronal ion channel function can lead to changes in intestinal motility. Neurogastroenterology and Motility, 2007, 19, 329-332.	1.6	1

#	Article	IF	Citations
55	Changes in colonic motility and the electrophysiological properties of myenteric neurons persist following recovery from trinitrobenzene sulfonic acid colitis in the guinea pig. Neurogastroenterology and Motility, 2007, 19, 990-1000.	1.6	60
56	Serotonin and Its Role in Colonic Function and in Gastrointestinal Disorders. Diseases of the Colon and Rectum, 2007, 50, 376-388.	0.7	144
57	The enteric nervous system: Inflammation-induced changes in neuronal function and related changes in motility. Nihon Heikatsukingakkaizassi, 2007, 11, J1-J51.	0.0	0
58	Effects of gastrointestinal inflammation on enteroendocrine cells and enteric neural reflex circuits. Autonomic Neuroscience: Basic and Clinical, 2006, 126-127, 250-257.	1.4	101
59	Review article: intestinal serotonin signalling in irritable bowel syndrome. Alimentary Pharmacology and Therapeutics, 2006, 23, 1067-1076.	1.9	175
60	Effects of serotonin transporter inhibition on gastrointestinal motility and colonic sensitivity in the mouse. Neurogastroenterology and Motility, 2006, 18, 464-471.	1.6	84
61	Spontaneous electrical rhythmicity and the role of the sarcoplasmic reticulum in the excitability of guinea pig gallbladder smooth muscle cells. American Journal of Physiology - Renal Physiology, 2006, 290, G655-G664.	1.6	27
62	Neural Control of the Gallbladder and Sphincter of Oddi., 2006,, 841-849.		3
63	Serotonin transporter function and expression are reduced in mice with TNBS-induced colitis. Neurogastroenterology and Motility, 2005, 17, 565-574.	1.6	126
64	Indiscriminate loss of myenteric neurones in the TNBS-inflamed guinea-pig distal colon. Neurogastroenterology and Motility, 2005, 17, 751-760.	1.6	147
65	mu-Opiate receptor agonist loperamide blocks bethanechol-induced gallbladder contraction, despite higher cholecystokinin plasma levels in man. Neurogastroenterology and Motility, 2005, 17, 761-766.	1.6	4
66	Synaptic facilitation and enhanced neuronal excitability in the submucosal plexus during experimental colitis in guinea-pig. Journal of Physiology, 2005, 564, 863-875.	1.3	80
67	Disruption of the filamentous actin cytoskeleton is necessary for the activation of capacitative calcium entry in naive smooth muscle cells. Cellular Signalling, 2005, 17, 635-645.	1.7	19
68	Enteroendocrine cells and 5-HT availability are altered in mucosa of guinea pigs with TNBS ileitis. American Journal of Physiology - Renal Physiology, 2004, 287, G998-G1007.	1.6	110
69	Changes in enteric neural circuitry and smooth muscle in the inflamed and infected gut. Neurogastroenterology and Motility, 2004, 16, 133-136.	1.6	46
70	Cyclic AMP-mediated inhibition of gallbladder contractility: role of K+ channel activation and Ca2+ signaling. British Journal of Pharmacology, 2004, 143, 994-1005.	2.7	19
71	Cyclooxygenase-2 contributes to dysmotility and enhanced excitability of myenteric AH neurones in the inflamed guinea pig distal colon. Journal of Physiology, 2004, 557, 191-205.	1.3	81
72	Innervation of the extrahepatic biliary tract. The Anatomical Record, 2004, 280A, 836-847.	2.3	36

#	Article	IF	Citations
73	Molecular defects in mucosal serotonin content and decreased serotonin reuptake transporter in ulcerative colitis and irritable bowel syndrome 1 \hat{a} ⁺ . Gastroenterology, 2004, 126, 1657-1664.	0.6	684
74	Chemical Mediators of Gallbladder Dysmotility. Current Medicinal Chemistry, 2004, 11, 1801-1812.	1.2	38
75	Enterochromaffin cells and 5-HT signaling in the pathophysiology of disorders of gastrointestinal function. Current Opinion in Investigational Drugs, 2004, 5, 55-60.	2.3	41
76	Effects of bioactive agents on biliary motor function. Current Gastroenterology Reports, 2003, 5, 154-159.	1.1	12
77	Distribution and chemical coding of cocaine- and amphetamine-regulated transcript peptide (CART)-immunoreactive neurons in the guinea pig bowel. Cell and Tissue Research, 2003, 312, 265-274.	1.5	44
78	Enhanced excitability of myenteric AH neurones in the inflamed guineaâ€pig distal colon. Journal of Physiology, 2003, 547, 589-601.	1.3	169
79	Serotonin availability is increased in mucosa of guinea pigs with TNBS-induced colitis. American Journal of Physiology - Renal Physiology, 2003, 285, G207-G216.	1.6	230
80	Antineuronal antibodies in idiopathic achalasia and gastro-oesophageal reflux disease. Gut, 2003, 52, 629-636.	6.1	116
81	Neuroimmune and epithelial interactions in intestinal inflammation. Current Opinion in Pharmacology, 2002, 2, 669-677.	1.7	72
82	Effects of PGE2 in guinea pig colonic myenteric ganglia. American Journal of Physiology - Renal Physiology, 2002, 283, G1388-G1397.	1.6	35
83	Tachykinins mediate slow excitatory postsynaptic transmission in guinea pig sphincter of Oddi ganglia. American Journal of Physiology - Renal Physiology, 2001, 281, G357-G364.	1.6	12
84	Chemical coding of intrinsic and extrinsic nerves in the guinea pig gallbladder: Distributions of PACAP and orphanin FQ. The Anatomical Record, 2001, 262, 101-109.	2.3	21
85	Distribution and chemical coding of orphanin FQ/nociceptin-immunoreactive neurons in the myenteric plexus of guinea pig intestines and sphincter of Oddi. Journal of Comparative Neurology, 2001, 430, 1-11.	0.9	15
86	A redoxâ€based mechanism for the contractile and relaxing effects of NO in the guineaâ€pig gall bladder. Journal of Physiology, 2001, 532, 793-810.	1.3	25
87	Agonists of proteinase-activated receptor 2 excite guinea pig ileal myenteric neurons. European Journal of Pharmacology, 2001, 431, 311-314.	1.7	43
88	Direct neuronal interactions between the duodenum and the sphincter of oddi. Current Gastroenterology Reports, 2000, 2, 104-111.	1.1	16
89	Actions of histamine on muscle and ganglia of the guinea pig gallbladder. American Journal of Physiology - Renal Physiology, 2000, 279, G622-G630.	1.6	25
90	Duodenal neurons provide nicotinic fast synaptic input to sphincter of Oddi neurons in guinea pig. American Journal of Physiology - Renal Physiology, 1999, 277, G226-G234.	1.6	16

#	Article	IF	CITATIONS
91	Neurochemical coding of myenteric neurons in the guinea-pig antrum. Cell and Tissue Research, 1999, 297, 81-90.	1.5	40
92	Neuropeptide Y (NPY) expression is increased in explanted guinea pig parasympathetic cardiac ganglia neurons. Brain Research, 1999, 827, 70-78.	1.1	20
93	Correlation of electrophysiology, neurochemistry and axonal projections of guineaâ€pig sphincter of Oddi neurones. Neurogastroenterology and Motility, 1998, 10, 235-244.	1.6	10
94	Expression and physiological actions of neuropeptide Y in guinea pig parasympathetic cardiac ganglia. Journal of the Autonomic Nervous System, 1998, 71, 190-195.	1.9	27
95	Neural Control of the Gallbladder: An Intracellular Study of Human Gallbladder Neurons. Digestion, 1998, 59, 125-129.	1.2	12
96	Nerves and Hormones Interact to Control Gallbladder Function. Physiology, 1998, 13, 84-90.	1.6	17
97	5-HT is present in nerves of guinea pig sphincter of Oddi and depolarizes sphincter of Oddi neurons. American Journal of Physiology - Renal Physiology, 1998, 275, G1018-G1027.	1.6	7
98	PGE ₂ hyperpolarizes gallbladder neurons and inhibits synaptic potentials in gallbladder ganglia. American Journal of Physiology - Renal Physiology, 1998, 274, G493-G502.	1.6	11
99	Duodenal Sensory Neurons Project to Sphincter of Oddi Ganglia in Guinea Pig. Journal of Neuroscience, 1998, 18, 8065-8073.	1.7	38
100	Identification of the cholinergic neurons in Guinea-pig sphincter of Oddi ganglia. Journal of the Autonomic Nervous System, 1997, 64, 12-18.	1.9	18
101	Tachykinin-induced activation of non-specific cation conductance via nk3neurokinin receptors in guinea-pig intracardiac neurones. Journal of Physiology, 1997, 504, 65-74.	1.3	46
102	Innervation of the gallbladder: Structure, neurochemical coding, and physiological properties of guinea pig gallbladder ganglia., 1997, 39, 1-13.		41
103	Structure and chemical coding of human, canine and opossum gallbladder ganglia. Cell and Tissue Research, 1996, 284, 289-302.	1.5	40
104	Expression of choline acetyltransferase immunoreactivity in guinea pig cardiac ganglia. Cell and Tissue Research, 1996, 285, 281-286.	1.5	68
105	Tachykinins as mediators of slow EPSPs in guineaâ€pig gallâ€bladder ganglia: involvement of neurokininâ€3 receptors Journal of Physiology, 1995, 485, 513-524.	1.3	48
106	Immunohistochemical identification of neurons in ganglia of the guinea pig sphincter of oddi. Journal of Comparative Neurology, 1995, 352, 106-116.	0.9	26
107	Evidence for afferent fiber innervation of parasympathetic neurons of the guinea-pig cardiac ganglion. Journal of the Autonomic Nervous System, 1995, 53, 166-174.	1.9	83
108	Actions of cholecystokinin and norepinephrine on vagal inputs to ganglion cells in guinea pig gallbladder. American Journal of Physiology - Renal Physiology, 1994, 267, G1146-G1151.	1.6	10

#	Article	IF	Citations
109	NADPH-diaphorase and VIP are co-localized in neurons of gallbladder ganglia. Journal of the Autonomic Nervous System, 1993, 43, 83-89.	1.9	51
110	Noradrenaline as a presynaptic inhibitory neurotransmitter in ganglia of the guineaâ€pig gallâ€bladder Journal of Physiology, 1993, 461, 387-402.	1.3	20
111	Structure of neurons and ganglia of the guinea pig gallbladder: Light and electron microscopic studies. Journal of Comparative Neurology, 1992, 317, 31-44.	0.9	16
112	Transmitter diversity in ganglion cells of the guinea pig gallbladder: An immunohistochemical study. Journal of Comparative Neurology, 1992, 317, 45-56.	0.9	48
113	The role of cholecystokinin in ganglionic transmission in the guineaâ€pig gallâ€bladder Journal of Physiology, 1991, 439, 89-102.	1.3	56
114	Intracellular recording from neurones of the guinea-pig gall-bladder Journal of Physiology, 1990, 429, 323-338.	1.3	42
115	Evaluation of the activity of chemically identified enteric neurons through the histochemical demonstration of cytochrome oxidase. Journal of Comparative Neurology, 1990, 301, 1-14.	0.9	59
116	Development of synaptic transmission at autonomic synapsesin vitro revealed by cytochrome oxidase histochemistry. Journal of Neurobiology, 1990, 21, 578-591.	3.7	16
117	Structure, afferent innervation, and transmitter content of ganglia of the guinea pig gallbladder: Relationship to the enteric nervous system. Journal of Comparative Neurology, 1989, 283, 374-390.	0.9	113
118	Immunocytochemical analysis of potential neurotransmitters present in the myenteric plexus and muscular layers of the corpus of the guinea pig stomach. The Anatomical Record, 1989, 224, 431-442.	2.3	44
119	Differences in synaptic inputs to preganglionic neurons in the dorsal and lateral band subdivisions of the cat sacral parasympathetic nucleus. Journal of Comparative Neurology, 1988, 268, 84-90.	0.9	16
120	Characterization and localization of a peripheral neural 5- hydroxytryptamine receptor subtype (5-HT1P) with a selective agonist, 3H-5-hydroxyindalpine. Journal of Neuroscience, 1988, 8, 2582-2595.	1.7	69
121	Distribution and ultrastructure of ventral root afferents to lamina I of the cat sacral spinal cord. Neuroscience Letters, 1987, 76, 1-6.	1.0	14
122	Origin and morphology of nerve fibers the aganglionic colon of the lethal spotted (ls/ls) mutant mouse. Journal of Comparative Neurology, 1987, 257, 237-252.	0.9	75
123	Peripheral neural serotonin receptors: identification and characterization with specific antagonists and agonists Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 9799-9803.	3.3	181
124	Functional heterogeneity in the myenter is plexus: Demonstration using cytochrome oxidase as a verified cytochemical probe of the activity of individual enteric neurons. Journal of Comparative Neurology, 1986, 249, 381-391.	0.9	61
125	A light and electron microscopic analysis of the sacral parasympathetic nucleus after labelling primary afferent and efferent elements with HRP. Journal of Comparative Neurology, 1986, 250, 33-57.	0.9	58
126	Physiological responses of guinea-pig myenteric neurons secondary to the release of endogenous serotonin by tryptamine. Neuroscience, 1985, 16, 223-240.	1.1	94

#	Article	IF	CITATIONS
127	Primary afferent projections from dorsal and ventral roots to autonomic preganglionic neurons in the cat sacral spinal cord: light and electron microscopic observations. Brain Research, 1984, 290, 152-157.	1.1	43
128	Ultrastructure of HRP-Labelled Neurons: A comparison of two sensitive techniques. Brain Research Bulletin, 1983, 10, 551-558.	1.4	15
129	Motility of the Biliary Tract. , 0, , 264-283.		2