
Julie Bossuyt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1856420/publications.pdf Version: 2024-02-01

LULLE ROSSUVT

#	Article	IF	CITATIONS
1	Beat-to-beat dynamic regulation of intracellular pH in cardiomyocytes. IScience, 2022, 25, 103624.	4.1	4
2	Deciphering cellular signals in adult mouse sinoatrial node cells. IScience, 2022, 25, 103693.	4.1	4
3	Stoichiometry of the sodium pump-phospholemman regulatory complex. Biophysical Journal, 2022, 121, 461a-462a.	0.5	0
4	Empagliflozin Reverses Late Na ⁺ Current Enhancement and Cardiomyocyte Proarrhythmia in a Translational Murine Model of Heart Failure With Preserved Ejection Fraction. Circulation, 2022, 145, 1029-1031.	1.6	27
5	Subcellular Propagation of Cardiomyocyte β-Adrenergic Activation of Calcium Uptake Involves Internal β-Receptors and AKAP7. Function, 2022, 3, .	2.3	6
6	Intracellular β ₁ -Adrenergic Receptors and Organic Cation Transporter 3 Mediate Phospholamban Phosphorylation to Enhance Cardiac Contractility. Circulation Research, 2021, 128, 246-261.	4.5	38
7	Dynamic Regulation of Intracellular PH in the Heart. Biophysical Journal, 2021, 120, 103a.	0.5	0
8	CaMKII and PKA-dependent phosphorylation co-regulate nuclear localization of HDAC4 in adult cardiomyocytes. Basic Research in Cardiology, 2021, 116, 11.	5.9	15
9	Mechanical Load Regulates Excitation-Ca ²⁺ Signaling-Contraction in Cardiomyocyte. Circulation Research, 2021, 128, 772-774.	4.5	9
10	CaMKII Serine 280 O-GlcNAcylation Links Diabetic Hyperglycemia to Proarrhythmia. Circulation Research, 2021, 129, 98-113.	4.5	38
11	Two-hit mechanism of cardiac arrhythmias in diabetic hyperglycaemia: reduced repolarization reserve, neurohormonal stimulation, and heart failure exacerbate susceptibility. Cardiovascular Research, 2021, 117, 2781-2793.	3.8	26
12	Cardiomyocyte Na+ and Ca2+ mishandling drives vicious cycle involving CaMKII, ROS, and ryanodine receptors. Basic Research in Cardiology, 2021, 116, 58.	5.9	33
13	Aging Disrupts Normal Time-of-Day Variation in Cardiac Electrophysiology. Circulation: Arrhythmia and Electrophysiology, 2020, 13, e008093.	4.8	16
14	Hyperglycemia regulates cardiac K+ channels via O-GlcNAc-CaMKII and NOX2-ROS-PKC pathways. Basic Research in Cardiology, 2020, 115, 71.	5.9	43
15	CaMKIIδC Drives Early Adaptive Ca 2+ Change and Late Eccentric Cardiac Hypertrophy. Circulation Research, 2020, 127, 1159-1178.	4.5	31
16	Hyperglycemia Acutely Increases Cytosolic Reactive Oxygen Species via <i>O</i> -linked GlcNAcylation and CaMKII Activation in Mouse Ventricular Myocytes. Circulation Research, 2020, 126, e80-e96.	4.5	82
17	Enhanced Depolarization Drive in Failing Rabbit Ventricular Myocytes. Circulation: Arrhythmia and Electrophysiology, 2019, 12, e007061.	4.8	29
18	Diabetic Hyperglycemia Regulates Potassium Channels and Arrhythmias in the Heart via Autonomous CaMKII Activation by O-Linked Glycosylation. Biophysical Journal, 2019, 116, 98a.	0.5	5

#	Article	IF	CITATIONS
19	CaMKII signaling in heart diseases: Emerging role in diabetic cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2019, 127, 246-259.	1.9	92
20	Altered Repolarization Reserve in Failing Rabbit Ventricular Myocytes. Circulation: Arrhythmia and Electrophysiology, 2018, 11, e005852.	4.8	30
21	Complex electrophysiological remodeling in postinfarction ischemic heart failure. Proceedings of the United States of America, 2018, 115, E3036-E3044.	7.1	72
22	Cardiac CaMKII activation promotes rapid translocation to its extra-dyadic targets. Journal of Molecular and Cellular Cardiology, 2018, 125, 18-28.	1.9	22
23	Emergency Spatiotemporal Shift: The Response of Protein Kinase D to Stress Signals in the Cardiovascular System. Frontiers in Pharmacology, 2017, 8, 9.	3.5	21
24	Multimodal second harmonic generation and two photon fluorescence imaging of microdomain calcium contraction coupling in single cardiomyocytes. , 2016, , .		0
25	L30A Mutation of Phospholemman Mimics Effects of Cardiac Glycosides in Isolated Cardiomyocytes. Biochemistry, 2016, 55, 6196-6204.	2.5	5
26	Genetically Encoded Biosensors Reveal PKA Hyperphosphorylation on the Myofilaments in Rabbit Heart Failure. Circulation Research, 2016, 119, 931-943.	4.5	43
27	Mechano-Chemo-Transduction in Rabbit Cardiomyocytes Mediated by no Signaling. Biophysical Journal, 2016, 110, 600a.	0.5	Ο
28	CA2+ Tides in Cardiomyocytes Under Mechanical Loading. Biophysical Journal, 2016, 110, 100a.	0.5	0
29	Multimodal SHG-2PF Imaging of Microdomain Ca ²⁺ -Contraction Coupling in Live Cardiac Myocytes. Circulation Research, 2016, 118, e19-28.	4.5	19
30	Nuclear remodelling: a consequence of nucleocytoplasmic traffic run amok?. Cardiovascular Research, 2015, 105, 6-7.	3.8	2
31	Na ⁺ /Ca ²⁺ exchange and Na ⁺ /K ⁺ â€ATPase in the heart. Journal of Physiology, 2015, 593, 1361-1382.	2.9	160
32	Novel Epac fluorescent ligand reveals distinct Epac1 vs. Epac2 distribution and function in cardiomyocytes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3991-3996.	7.1	57
33	S-Nitrosylation Induces Both Autonomous Activation and Inhibition of Calcium/Calmodulin-dependent Protein Kinase II δ. Journal of Biological Chemistry, 2015, 290, 25646-25656.	3.4	81
34	Assessing GPCR and G Protein Signaling to the Nucleus in Live Cells Using Fluorescent Biosensors. Methods in Molecular Biology, 2015, 1234, 149-159.	0.9	0
35	β-Adrenergic Signaling Inhibits G _q -Dependent Protein Kinase D Activation by Preventing Protein Kinase D Translocation. Circulation Research, 2014, 114, 1398-1409.	4.5	13
36	Junctional Cleft [Ca ²⁺] _i Measurements Using Novel Cleft-Targeted Ca ²⁺ Sensors. Circulation Research, 2014, 115, 339-347.	4.5	44

#	Article	IF	CITATIONS
37	Early Remodeling of Perinuclear Ca ²⁺ Stores and Nucleoplasmic Ca ²⁺ Signaling During the Development of Hypertrophy and Heart Failure. Circulation, 2014, 130, 244-255.	1.6	74
38	Measuring Local Gradients of Intramitochondrial [Ca ²⁺] in Cardiac Myocytes During Sarcoplasmic Reticulum Ca ²⁺ Release. Circulation Research, 2013, 112, 424-431.	4.5	107
39	Structure Transitions of the Sodium, Potassium-ATPase Investigated by Intramolecular FRET. Biophysical Journal, 2013, 104, 71a.	0.5	Ο
40	Superinhibitory Phospholemman Mutants as Potential Therapeutics for Heart Failure. Biophysical Journal, 2013, 104, 153a.	0.5	0
41	The PLM Homotetramer has a Structural Basis that Parallels that of PLB: The Leucine Zipper. Biophysical Journal, 2013, 104, 407a.	0.5	0
42	Visualizing CaMKII and CaM activity: a paradigm of compartmentalized signaling. Journal of Molecular Medicine, 2013, 91, 907-916.	3.9	21
43	Acute β-Adrenergic Activation Triggers Nuclear Import of Histone Deacetylase 5 and Delays Gq-induced Transcriptional Activation. Journal of Biological Chemistry, 2013, 288, 192-204.	3.4	44
44	Nuclear Translocation of Cardiac G Protein-Coupled Receptor Kinase 5 Downstream of Select Gq-Activating Hypertrophic Ligands Is a Calmodulin-Dependent Process. PLoS ONE, 2013, 8, e57324.	2.5	60
45	Na+/K+-ATPase E960 and phospholemman F28 are critical for their functional interaction. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20756-20761.	7.1	15
46	Junctional Cleft [Ca]i Measurements using Novel Cleft-Targeted Ca Sensors. Biophysical Journal, 2012, 102, 408a.	0.5	2
47	The human phospholamban Arg14-deletion mutant localizes to plasma membrane and interacts with the Na/K-ATPase. Journal of Molecular and Cellular Cardiology, 2012, 52, 773-782.	1.9	50
48	Na Pump E960 Site is Critical for the Interaction with Phospholemman. Biophysical Journal, 2011, 100, 464a.	0.5	0
49	Identification of Phospholemman Residues Critical to Phospholemman Oligomerization and Na Pump Association. Biophysical Journal, 2011, 100, 466a.	0.5	0
50	RhoA protects the mouse heart against ischemia/reperfusion injury. Journal of Clinical Investigation, 2011, 121, 3269-3276.	8.2	83
51	Fluorescence Resonance Energy Transfer–Based Sensor Camui Provides New Insight Into Mechanisms of Calcium/Calmodulin-Dependent Protein Kinase II Activation in Intact Cardiomyocytes. Circulation Research, 2011, 109, 729-738.	4.5	82
52	Phosphomimetic Mutations Enhance Oligomerization of Phospholemman and Modulate Its Interaction with the Na/K-ATPase. Journal of Biological Chemistry, 2011, 286, 9120-9126.	3.4	29
53	Spatiotemporally Distinct Protein Kinase D Activation in Adult Cardiomyocytes in Response to Phenylephrine and Endothelin. Journal of Biological Chemistry, 2011, 286, 33390-33400.	3.4	38
54	Role of phospholemman phosphorylation sites in mediating kinase-dependent regulation of the Na ⁺ -K ⁺ -ATPase. American Journal of Physiology - Cell Physiology, 2010, 299, C1363-C1369.	4.6	29

#	Article	IF	CITATIONS
55	Endothelin and Phenylephrine Both Trigger Nuclear IP3 Elevation, but Differ in Ability to Activate Nuclear HDAC5 Export. Biophysical Journal, 2010, 98, 308a-309a.	0.5	0
56	Phosphomimetic Mutations Increase FXYD1 Oligomerization, but Does Not Alter its Quaternary Conformation. Biophysical Journal, 2010, 98, 171a.	0.5	0
57	Isoform Specificity of the Na/K-ATPase Association and Regulation by Phospholemman. Journal of Biological Chemistry, 2009, 284, 26749-26757.	3.4	65
58	Phospholamban Oligomerization, Quaternary Structure, and Sarco(endo)plasmic Reticulum Calcium ATPase Binding Measured by Fluorescence Resonance Energy Transfer in Living Cells. Journal of Biological Chemistry, 2008, 283, 12202-12211.	3.4	56
59	Ca ²⁺ /Calmodulin-Dependent Protein Kinase IlĨ´ and Protein Kinase D Overexpression Reinforce the Histone Deacetylase 5 Redistribution in Heart Failure. Circulation Research, 2008, 102, 695-702.	4.5	143
60	Differential Integration of Ca2+-Calmodulin Signal in Intact Ventricular Myocytes at Low and High Affinity Ca2+-Calmodulin Targets. Journal of Biological Chemistry, 2008, 283, 31531-31540.	3.4	37
61	Inhibition of hsp27 Phosphorylation Increases Interaction with Hic5 in Vascular Myocytes. FASEB Journal, 2008, 22, 1208.8.	0.5	0
62	Biosensors to Measure Inositol 1,4,5-Trisphosphate Concentration in Living Cells with Spatiotemporal Resolution. Journal of Biological Chemistry, 2006, 281, 608-616.	3.4	92
63	Dynamic changes in free Ca-calmodulin levels in adult cardiac myocytes. Journal of Molecular and Cellular Cardiology, 2006, 41, 451-458.	1.9	42
64	Regulation of Ca2+ and Na+ in Normal and Failing Cardiac Myocytes. Annals of the New York Academy of Sciences, 2006, 1080, 165-177.	3.8	128
65	Phospholemman Phosphorylation Mediates the Protein Kinase C–Dependent Effects on Na + /K + Pump Function in Cardiac Myocytes. Circulation Research, 2006, 99, 1376-1383.	4.5	64
66	Local InsP3-dependent perinuclear Ca2+ signaling in cardiac myocyte excitation-transcription coupling. Journal of Clinical Investigation, 2006, 116, 675-682.	8.2	427
67	Phospholemman Phosphorylation Alters Its Fluorescence Resonance Energy Transfer with the Na/K-ATPase Pump. Journal of Biological Chemistry, 2006, 281, 32765-32773.	3.4	49
68	Phospholemman-Phosphorylation Mediates the β-Adrenergic Effects on Na/K Pump Function in Cardiac Myocytes. Circulation Research, 2005, 97, 252-259.	4.5	164
69	Adenoviral Gene Transfer of Mutant Phospholamban Rescues Contractile Dysfunction in Failing Rabbit Myocytes With Relatively Preserved SERCA Function. Circulation Research, 2005, 96, 815-817.	4.5	31
70	Expression and Phosphorylation of the Na-Pump Regulatory Subunit Phospholemman in Heart Failure. Circulation Research, 2005, 97, 558-565.	4.5	100
71	Myocyte Nitric Oxide Synthase 2 Contributes to Blunted β-Adrenergic Response in Failing Human Hearts by Decreasing Ca 2+ Transients. Circulation, 2004, 109, 1886-1891.	1.6	78
72	Evidence for cardiac sodium-calcium exchanger association with caveolin-3. FEBS Letters, 2002, 511, 113-117.	2.8	56

#	Article	IF	CITATIONS
73	Expressing and purifying membrane transport proteins in high yield. Journal of Proteomics, 2002, 50, 233-243.	2.4	3
74	Sodium alcium Exchange Crystallization. Annals of the New York Academy of Sciences, 2002, 976, 100-102.	3.8	2
75	The Cardiac Sodiumâ€Calcium Exchanger Associates with Caveolinâ€3. Annals of the New York Academy of Sciences, 2002, 976, 197-204.	3.8	46