Sunil Bajpai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1856215/publications.pdf

Version: 2024-02-01

236612 205818 2,664 50 25 48 h-index citations g-index papers 50 50 50 4186 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Investigation of swelling/degradation behaviour of alginate beads crosslinked with Ca2+ and Ba2+ ions. Reactive and Functional Polymers, 2004, 59, 129-140.	2.0	565
2	A versatile strategy to fabricate hydrogel–silver nanocomposites and investigation of their antimicrobial activity. Journal of Colloid and Interface Science, 2007, 315, 389-395.	5.0	266
3	Preparation, characterization and antibacterial applications of ZnO-nanoparticles coated polyethylene films for food packaging. Colloids and Surfaces B: Biointerfaces, 2012, 90, 16-20.	2.5	206
4	Graft copolymerization onto cellulose-based filter paper and its further development as silver nanoparticles loaded antibacterial food-packaging material. Colloids and Surfaces B: Biointerfaces, 2009, 69, 164-168.	2.5	184
5	Controlling of silver nanoparticles structure by hydrogel networks. Journal of Colloid and Interface Science, 2010, 342, 73-82.	5.0	171
6	Investigation of water uptake behavior and stability of calcium alginate/chitosan bi-polymeric beads: Part-1. Reactive and Functional Polymers, 2006, 66, 645-658.	2.0	97
7	Immobilization of $\hat{I}\pm$ -amylase onto cellulose-coated magnetite (CCM) nanoparticles and preliminary starch degradation study. Journal of Molecular Catalysis B: Enzymatic, 2009, 59, 134-139.	1.8	95
8	Investigation of water vapor permeability and antimicrobial property of zinc oxide nanoparticlesâ€loaded chitosanâ€based edible film. Journal of Applied Polymer Science, 2010, 115, 674-683.	1.3	76
9	Investigation of curcumin release from chitosan/cellulose micro crystals (CMC) antimicrobial films. International Journal of Biological Macromolecules, 2015, 79, 440-448.	3.6	73
10	Blue light-emitting carbon dots (CDs) from a milk protein and their interaction with Spinacia oleracea leaf cells. International Nano Letters, 2019, 9, 203-212.	2.3	71
11	Nano cellulose dispersed chitosan film with Ag NPs/Curcumin: An in vivo study on Albino Rats for wound dressing. International Journal of Biological Macromolecules, 2017, 104, 1012-1019.	3.6	63
12	Synthesis, characterization and antimicrobial applications of zinc oxide nanoparticles loaded gum acacia/poly(SA) hydrogels. Carbohydrate Polymers, 2016, 153, 60-65.	5.1	59
13	<i>In Situ</i> Formation of Silver Nanoparticles within Chitosan-attached Cotton Fabric for Antibacterial Property. Journal of Industrial Textiles, 2011, 40, 229-245.	1.1	53
14	Nano Zinc Oxide-Loaded Calcium Alginate Films with Potential Antibacterial Properties. Food and Bioprocess Technology, 2012, 5, 1871-1881.	2.6	52
15	A green approach to prepare silver nanoparticles loaded gum acacia/poly(acrylate) hydrogels. International Journal of Biological Macromolecules, 2015, 80, 177-188.	3.6	41
16	Copper nanoparticles loaded alginateâ€impregnated cotton fabric with antibacterial properties. Journal of Applied Polymer Science, 2012, 126, E319.	1.3	40
17	Swelling and drug release behavior of calcium alginate/poly (sodium acrylate) hydrogel beads. Designed Monomers and Polymers, 2016, 19, 89-98.	0.7	39
18	Synthesis, mechanical properties of fluorescent carbon dots loaded nanocomposites chitosan film for wound healing and drug delivery. Arabian Journal of Chemistry, 2020, 13, 4882-4894.	2.3	37

#	Article	IF	CITATIONS
19	Investigation of dynamic release of vitamin B2 from calcium alginate/chitosan multilayered beads: Part II. Reactive and Functional Polymers, 2006, 66, 1565-1574.	2.0	35
20	CNWs loaded poly(SA) hydrogels: Effect of high concentration of CNWs on water uptake and mechanical properties. Carbohydrate Polymers, 2014, 106, 351-358.	5.1	34
21	Minocycline-loaded cellulose nano whiskers/poly(sodium acrylate) composite hydrogel films as wound dressing. International Journal of Biological Macromolecules, 2015, 79, 76-85.	3.6	33
22	Curcumin/cellulose micro crystals/chitosan films: Water absorption behavior and in vitro cytotoxicity. International Journal of Biological Macromolecules, 2015, 75, 239-247.	3.6	31
23	Water absorption and moisture permeation properties of chitosan/poly(acrylamide-co-itaconic acid) IPC films. International Journal of Biological Macromolecules, 2016, 84, 1-9.	3.6	29
24	<i>In situ</i> formation of silver nanoparticles in poly(methacrylic acid) hydrogel for antibacterial applications. Polymer Engineering and Science, 2013, 53, 1751-1759.	1.5	27
25	Ca(II)+Ba(II) ions crosslinked alginate gels prepared by a novel diffusion through dialysis tube (DTDT) approach and preliminary BSA release study. Polymer Degradation and Stability, 2016, 134, 22-29.	2.7	27
26	Modulation of dynamic release of vitamin B2 from a model pH-sensitive terpolymeric hydrogel system. Polymer International, 2004, 53, 2178-2187.	1.6	26
27	In Situ Formation of Silver Nanoparticles in Poly(N-Isopropyl Acrylamide) Hydrogel for Antibacterial Applications. Designed Monomers and Polymers, 2011, 14, 383-394.	0.7	26
28	Preparation, characterization and preliminary calcium release study of floating sodium alginate/dextran-based hydrogel beads: part I. Polymer International, 2008, 57, 57-65.	1.6	22
29	Controlled release of Doxycycline from gum acacia/poly(sodium acrylate) microparticles for oral drug delivery. International Journal of Biological Macromolecules, 2017, 104, 1064-1071.	3.6	22
30	Silver nanoparticles loaded thermosensitive cotton fabric for antibacterial application. Journal of Industrial Textiles, 2014, 44, 58-69.	1.1	21
31	Carbon dots from Guar Gum: Synthesis, characterization and preliminary in vivo application in plant cells. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2019, 241, 92-99.	1.7	21
32	Kinetics of polyacrylamide adsorption at the iron oxide-solution interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 101, 21-28.	2.3	17
33	Swelling behavior of cross-linked dextran hydrogels and preliminary Gliclazide release behavior. International Journal of Biological Macromolecules, 2016, 93, 978-987.	3.6	14
34	Synthesis of nanosilver loaded chitosan/poly(acrylamide-co-itaconic acid) based inter-polyelectrolyte complex films for antimicrobial applications. Carbohydrate Polymers, 2016, 154, 223-230.	5.1	14
35	The adsorptive removal of a cationic drug from aqueous solution using poly (methacrylic acid) hydrogels. Water S A, 2014, 40, 49.	0.2	13
36	Controlled release of anti-diabetic drug Gliclazide from poly(caprolactone)/poly(acrylic acid) hydrogels. Journal of Biomaterials Science, Polymer Edition, 2015, 26, 947-962.	1.9	13

3

#	Article	IF	CITATIONS
37	Gentamicinâ€loaded poly(acrylic acid)â€grafted cotton fibers, part 1: Synthesis, characterization, and preliminary drug release study. Journal of Applied Polymer Science, 2011, 122, 366-374.	1.3	9
38	Vapor induced phase inversion technique to prepare chitosan/microcrystalline cellulose composite films: synthesis, characterization and moisture absorption study. Cellulose, 2015, 22, 3825-3837.	2.4	9
39	Copper nanoparticles loaded cellulose-g-poly acrylic acid fibers with antibacterial properties. Journal of Industrial Textiles, 2016, 45, 495-515.	1.1	8
40	Controlled delivery of diclofenac sodium from calcium alginate beads loaded with a drug–resin complex. Journal of Applied Polymer Science, 2009, 112, 416-424.	1.3	7
41	Sorptive removal of crystal violet from aqueous solution using spent tea leaves: part I optimization of sorption conditions and kinetic studies. Acta Chimica Slovenica, 2010, 57, 751-7.	0.2	4
42	Cu(II)-Cross-linked Chitosan Membrane (CCCM): Preparation, Characterization and Urea Removal Study Using the Diffusion-Cell Model (DCM). Designed Monomers and Polymers, 2009, 12, 43-55.	0.7	3
43	Dynamic uptake of drug norfloxacin from aqueous solution using spent tea leaves as a sorbent. International Journal of Environment and Waste Management, 2014, 13, 376.	0.2	3
44	Magnetiteâ€loaded calciumâ€alginate (MLCA) particles as potential sorbent for removal of Ni(II) from aqueous solution. Journal of Applied Polymer Science, 2009, 114, 475-483.	1.3	2
45	Photopolymerized pH-sensitive semi-IPN: Synthesis, water uptake analysis, and preliminary drug release study. Polymer Engineering and Science, 2013, 53, n/a-n/a.	1.5	2
46	Removal of Oil from Oil-in-Water Emulsion by Poly (Sulfur/Soya Bean Oil) Composite Adsorbent: An Equilibrium Study. Journal of Polymers and the Environment, 2021, 29, 2385.	2.4	2
47	Magnetically driven poly(sulfur/oil) composite as an efficient oil adsorbent. Part-I: Synthesis, characterization and preliminary oil removal study. Environmental Nanotechnology, Monitoring and Management, 2020, 13, 100293.	1.7	1
48	"Poly (sulfur/oil) impregnated cotton: A newly developed material for effective oil removal from contaminated waterâ€. Journal of Applied Polymer Science, 2021, 138, 49956.	1.3	1
49	Microwave-assisted Synthesis of Water-soluble Fluorescent Carbon Nanoparticles as an Effective Crosslinker to Control the Water Absorption and Moisture Transmission Behavior of Chitosan/Carbon Nanocomposite Film. Current Nanomaterials, 2019, 4, 101-111.	0.2	0
50	Carbon Dots from Guar Gum: Synthesis, Characterization and Preliminary Study of Carbon Dots Penetration into <i>Spinacia oleracea</i> Leaf Cells. Journal of Bionanoscience, 2018, 12, 764-771.	0.4	0