Roberto Bravo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1856157/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Perspectives on Organelle Interaction, Protein Dysregulation, and Cancer Disease. Frontiers in Cell and Developmental Biology, 2021, 9, 613336.	3.7	18
2	Endoplasmic reticulumâ^'mitochondria coupling increases during doxycycline-induced mitochondrial stress in HeLa cells. Cell Death and Disease, 2021, 12, 657.	6.3	16
3	Insulin and IGF-1 receptors regulate complex l–dependent mitochondrial bioenergetics and supercomplexes via FoxOs in muscle. Journal of Clinical Investigation, 2021, 131, .	8.2	28
4	Differential Effects of Oleic and Palmitic Acids on Lipid Droplet-Mitochondria Interaction in the Hepatic Cell Line HepG2. Frontiers in Nutrition, 2021, 8, 775382.	3.7	31
5	Sarcoplasmic reticulum and calcium signaling in muscle cells: Homeostasis and disease. International Review of Cell and Molecular Biology, 2020, 350, 197-264.	3.2	28
6	Sucralose Stimulates Mitochondrial Bioenergetics in Caco-2 Cells. Frontiers in Nutrition, 2020, 7, 585484.	3.7	4
7	Caveolin-1 impairs PKA-DRP1-mediated remodelling of ER–mitochondria communication during the early phase of ER stress. Cell Death and Differentiation, 2019, 26, 1195-1212.	11.2	46
8	Protection of the myocardium against ischemia/reperfusion injury by angiotensin-(1–9) through an AT2R and Akt-dependent mechanism. Pharmacological Research, 2018, 135, 112-121.	7.1	28
9	Sarcoplasmic reticulum–mitochondria communication in cardiovascular pathophysiology. Nature Reviews Cardiology, 2017, 14, 342-360.	13.7	114
10	Calcium Transport and Signaling in Mitochondria. , 2017, 7, 623-634.		168
11	Inhibition of mitochondrial fission prevents hypoxia-induced metabolic shift and cellular proliferation of pulmonary arterial smooth muscle cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 2891-2903.	3.8	48
12	Prolonged Activation of the Htr2b Serotonin Receptor Impairs Glucose Stimulated Insulin Secretion and Mitochondrial Function in MIN6 Cells. PLoS ONE, 2017, 12, e0170213.	2.5	23
13	Calcium in Obesity and Related Diseases. , 2017, , 35-44.		0
14	Calcium Sensing Receptor as a Novel Mediator of Adipose Tissue Dysfunction: Mechanisms and Potential Clinical Implications. Frontiers in Physiology, 2016, 7, 395.	2.8	29
15	mTORC1 inhibitor rapamycin and ER stressor tunicamycin induce differential patterns of ER-mitochondria coupling. Scientific Reports, 2016, 6, 36394.	3.3	32
16	Regulation of cardiomyocyte autophagy by calcium. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E587-E596.	3.5	9
17	HERPUD1 protects against oxidative stress-induced apoptosis through downregulation of the inositol 1,4,5-trisphosphate receptor. Free Radical Biology and Medicine, 2016, 90, 206-218.	2.9	31
18	Defective insulin signaling and mitochondrial dynamics in diabetic cardiomyopathy. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 1113-1118,	4.1	50

Roberto Bravo

#	Article	IF	CITATIONS
19	ER-to-mitochondria miscommunication and metabolic diseases. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 2096-2105.	3.8	90
20	Tumor Suppression and Promotion by Autophagy. BioMed Research International, 2014, 2014, 1-15.	1.9	147
21	Organelle communication: Signaling crossroads between homeostasis and disease. International Journal of Biochemistry and Cell Biology, 2014, 50, 55-59.	2.8	46
22	Dexamethasone-induced autophagy mediates muscle atrophy through mitochondrial clearance. Cell Cycle, 2014, 13, 2281-2295.	2.6	89
23	Mitochondrial fragmentation impairs insulin-dependent glucose uptake by modulating Akt activity through mitochondrial Ca ²⁺ uptake. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E1-E13.	3.5	49
24	Herp depletion protects from protein aggregation by up-regulating autophagy. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 3295-3305.	4.1	32
25	Endoplasmic Reticulum and the Unfolded Protein Response. International Review of Cell and Molecular Biology, 2013, 301, 215-290.	3.2	440
26	Cell Death and Survival Through the Endoplasmic Reticulum- Mitochondrial Axis. Current Molecular Medicine, 2013, 13, 317-329.	1.3	104
27	Endoplasmic reticulum: ER stress regulates mitochondrial bioenergetics. International Journal of Biochemistry and Cell Biology, 2012, 44, 16-20.	2.8	162
28	Increased ER–mitochondrial coupling promotes mitochondrial respiration and bioenergetics during early phases of ER stress. Journal of Cell Science, 2011, 124, 2143-2152.	2.0	483
29	Anabolic Androgenic Steroids and Intracellular Calcium Signaling: A Mini Review on Mechanisms and Physiological Implications. Mini-Reviews in Medicinal Chemistry, 2011, 11, 390-398.	2.4	40
30	Parallel activation of Ca2+-induced survival and death pathways in cardiomyocytes by sorbitol-induced hyperosmotic stress. Apoptosis: an International Journal on Programmed Cell Death, 2010, 15, 887-903.	4.9	27
31	Glucose deprivation causes oxidative stress and stimulates aggresome formation and autophagy in cultured cardiac myocytes. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2010, 1802, 509-518.	3.8	102
32	An Inositol 1,4,5-Triphosphate (IP3)-IP3 Receptor Pathway Is Required for Insulin-Stimulated Glucose Transporter 4 Translocation and Glucose Uptake in Cardiomyocytes. Endocrinology, 2010, 151, 4665-4677.	2.8	47
33	Gln ²⁷ →Gluβ ₂ â€Adrenergic Receptor Polymorphism in Heart Failure Patients: Differential Clinical and Oxidative Response to Carvedilol. Basic and Clinical Pharmacology and Toxicology, 2009, 104, 374-378.	2.5	22
34	The transcription factor MEF2C mediates cardiomyocyte hypertrophy induced by IGF-1 signaling. Biochemical and Biophysical Research Communications, 2009, 388, 155-160.	2.1	43