Fawzy Samuel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1856152/publications.pdf Version: 2024-02-01

		57758	91884
223	6,557	44	69
papers	citations	h-index	g-index
233	233	233	2192
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Crystallization behavior of iron-containing intermetallic compounds in 319 aluminum alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1994, 25, 1761-1773.	2.2	250
2	Effect of casting imperfections on the fatigue life of 319-F and A356-T6 Al–Si casting alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 473, 65-75.	5.6	168
3	A study of tensile properties in Al–Si–Cu and Al–Si–Mg alloys: Effect of β-iron intermetallics and porosity. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 490, 36-51.	5.6	167
4	Influence of additives on the microstructure and tensile properties of near-eutectic Al–10.8%Si cast alloy. Materials & Design, 2009, 30, 3943-3957.	5.1	157
5	Porosity formation in Al-9 Wt Pct Si-3 Wt Pct Cu alloy systems: Metallographic observations. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1996, 27, 415-429.	2.2	144
6	Microstructural aspects of the dissolution and melting of Al2Cu phase in Al-Si alloys during solution heat treatment. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1996, 27, 1785-1798.	2.2	135
7	Iron intermetallic phases in the Al corner of the Al-Si-Fe system. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2003, 34, 807-825.	2.2	134
8	Title is missing!. Journal of Materials Science, 2003, 38, 1203-1218.	3.7	123
9	Microstructure, tensile properties and fracture behavior of high temperature Al–Si–Mg–Cu cast alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 577, 64-72.	5.6	117
10	Incipient melting of Al5Mg8Si6Cu2 and Al2Cu intermetallics in unmodified and strontium-modified Al–Si–Cu–Mg (319) alloys during solution heat treatment. Journal of Materials Science, 1998, 33, 2283-2297.	3.7	115
11	Effect of metallurgical parameters on the hardness and microstructural characterization of as-cast and heat-treated 356 and 319 aluminum alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 443, 185-201.	5.6	115
12	The ambient and high temperature deformation behavior of Al–Si–Cu–Mg alloy with minor Ti, Zr, Ni additions. Materials & Design, 2014, 58, 89-101.	5.1	115
13	Effect of Mg on the ageing behaviour of Al-Si-Cu 319 type aluminium casting alloys. Journal of Materials Science, 1999, 34, 4671-4697.	3.7	112
14	Observations on the formation of ?-Al5FeSi phase in 319 type Al-Si alloys. Journal of Materials Science, 1996, 31, 5529-5539.	3.7	107
15	Effect of grain refiner on the tensile and impact properties of Al–Si–Mg cast alloys. Materials & Design, 2014, 56, 468-479.	5.1	105
16	A metallographic study of porosity and fracture behavior in relation to the tensile properties in 319.2 end chill castings. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1995, 26, 2359-2372.	2.2	103
17	Effect of Mg and Sr additions on the formation of intermetallics in Al-6 Wt pct Si-3.5 Wt pct Cu-(0.45) to (0.8) Wt pct Fe 319-type alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1998, 29, 2871-2884.	2.2	96
18	Dissolution of iron intermetallics in Al-Si Alloys through nonequilibrium heat treatment. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1995, 26, 2161-2174.	2.2	95

#	Article	IF	CITATIONS
19	Metallurgical parameters controlling the microstructure and hardness of Al–Si–Cu–Mg base alloys. Materials & Design, 2011, 32, 2130-2142.	5.1	94
20	Title is missing!. Journal of Materials Science, 2003, 38, 4507-4522.	3.7	89
21	Influence of oxides on porosity formation in Sr-treated Al-Si casting alloys. Journal of Materials Science, 2003, 38, 1255-1267.	3.7	89
22	Effect of grain refining and Sr-modification interactions on the impact toughness of Al–Si–Mg cast alloys. Materials & Design, 2014, 56, 264-273.	5.1	84
23	Parameters controlling the performance of AA319-type alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 367, 96-110.	5.6	83
24	The effects of mischmetal, cooling rate and heat treatment on the eutectic Si particle characteristics of A319.1, A356.2 and A413.1 Al–Si casting alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 480, 342-355.	5.6	82
25	Effect of Mg and Sr-modification on the mechanical properties of 319-type aluminum cast alloys subjected to artificial aging. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 480, 356-364.	5.6	78
26	Influence of Mg and solution heat treatment on the occurrence of incipient melting in Al–Si–Cu–Mg cast alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 543, 22-34.	5.6	78
27	Optimizing the tensile properties of Al–Si–Cu–Mg 319-type alloys: Role of solution heat treatment. Materials & Design, 2014, 58, 426-438.	5.1	75
28	Effect of silicon particles on the fatigue crack growth characteristics of Al-12 Wt Pct Si-0.35 Wt Pct Mg-(0 to 0.02) Wt Pct Sr casting alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1995, 26, 1553-1570.	2.2	73
29	Precipitation-hardening in cast AL–Si–Cu–Mg alloys. Journal of Materials Science, 2010, 45, 641-651.	3.7	68
30	Effect of Fe content on the fracture behaviour of Al–Si–Cu cast alloys. Materials & Design, 2014, 57, 366-373.	5.1	64
31	Heat treatment of 319.2 aluminium automotive alloy Part 1, Solution heat treatment. Cast Metals, 1995, 8, 91-106.	0.4	61
32	On the impact toughness of Al-15Âvol.% B 4 C metal matrix composites. Composites Part B: Engineering, 2015, 79, 83-94.	12.0	59
33	Nucleation of Fe-intermetallic phases in the Al-Si-Fe alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2005, 36, 1017-1032.	2.2	58
34	Effect of solidification rate and metal feedability on porosity and SiCAl2O3 particle distribution in an Al-Si-Mg (359) alloy. Composites Science and Technology, 1995, 53, 301-315.	7.8	57
35	Studies on addition of inclusions to molten aluminum using a novel technique. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 1995, 26, 103-109.	2.1	57
36	Effect of Mg and Cu additions on the microstructural characteristics and tensile properties of Sr-modified Al-Si eutectic alloys. International Journal of Cast Metals Research, 2002, 14, 235-253.	1.0	57

#	Article	IF	CITATIONS
37	Intermetallic phases in Al–Si based cast alloys: new perspective. International Journal of Cast Metals Research, 2014, 27, 107-114.	1.0	57
38	Various aspects involved in the production of low-hydrogen aluminium castings. Journal of Materials Science, 1992, 27, 6533-6563.	3.7	55
39	Effect of metallurgical parameters on the machinability of heat-treated 356 and 319 aluminum alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 434, 207-217.	5.6	52
40	Effects of Sr-modification, iron-based intermetallics and aging treatment on the impact toughness of 356 Al–Si–Mg alloy. Journal of Materials Science, 2011, 46, 3027-3045.	3.7	51
41	The effects of mischmetal, cooling rate and heat treatment on the hardness of A319.1, A356.2 and A413.1 Al–Si casting alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 486, 241-252.	5.6	50
42	A preliminary study on optimizing the heat treatment of high strength Al–Cu–Mg–Zn alloys. Materials & Design, 2014, 57, 342-350.	5.1	48
43	Title is missing!. Journal of Materials Science, 2003, 38, 4523-4534.	3.7	47
44	Influences of alloying elements, solution treatment time and quenching media on quality indices of 413-type Al–Si casting alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 489, 426-438.	5.6	47
45	Role of modification and melt thermal treatment processes on the microstructure and tensile properties of Al–Si alloys. Materials & Design, 2015, 80, 99-108.	5.1	47
46	Effects of Mg, Fe, Be additions and solution heat treatment on the π-AlMgFeSi iron intermetallic phase in Al–7Si–Mg alloys. Journal of Materials Science, 2010, 45, 1528-1539.	3.7	46
47	Influence of Aging Parameters on the Tensile Properties and Quality Index of Al-9ÂPct Si-1.8ÂPct Cu-0.5ÂPct Mg 354-Type Casting Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 61-73.	2.2	46
48	Impact toughness and fractography of Al–Si–Cu–Mg base alloys. Materials & Design, 2011, 32, 3900-3910	. 5.1	45
49	Effect of trace elements on β-Al ₅ FeSi characteristics, porosity and tensile properties of Al-Si-Cu (319) cast alloys. International Journal of Cast Metals Research, 2001, 14, 97-120.	1.0	44
50	Influence of additives on the impact toughness of Al–10.8% Si near-eutectic cast alloys. Materials & Design, 2009, 30, 4218-4229.	5.1	44
51	A Review on the Heat Treatment of Al-Si-Cu/Mg Casting Alloys. , 0, , .		44
52	Effect of additives on the microstructure and tensile properties of Al–Si alloys. Journal of Materials Research and Technology, 2019, 8, 2255-2268.	5.8	42
53	Influence of Tin Addition on the Microstructure and Mechanical Properties of Al-Si-Cu-Mg and Al-Si-Mg Casting Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2008, 39, 490-501.	2.2	41
54	The role of alloying additives and aging treatment on the impact behavior of 319 cast alloy. Materials & Design, 2011, 32, 3205-3220.	5.1	41

#	Article	IF	CITATIONS
55	Effect of Rare Earth Metals on the Microstructure of Al-Si Based Alloys. Materials, 2016, 9, 45.	2.9	41
56	Relationship between tensile and impact properties in Al–Si–Cu–Mg cast alloys and their fracture mechanisms. Materials & Design, 2014, 53, 938-946.	5.1	40
57	Metallographic observations ofβ-AlFeSi phase and its role in porosity formation in Al–7%Si alloys. International Journal of Cast Metals Research, 2006, 19, 156-166.	1.0	37
58	Parameters controlling the microstructure of Al–11Si–2.5Cu–Mg alloys. Materials & Design, 2010, 31, 902-912.	5.1	37
59	Mechanical properties and fracture of Al–15 vol%B ₄ C based metal matrix composites. International Journal of Cast Metals Research, 2014, 27, 7-14.	1.0	37
60	Precipitation of β-Al5FeSi Phase Platelets in Al-Si Based Casting Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2009, 40, 2457-2469.	2.2	36
61	Influence of aging treatments and alloying additives on the hardness of Al–11Si–2.5Cu–Mg alloys. Materials & Design, 2010, 31, 3791-3803.	5.1	34
62	Parameters controlling the performance of AA319-type alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 367, 111-122.	5.6	33
63	Effects of surface porosity on the fatigue strength of AE425 and PM390 hypereutectic Al–Si casting alloys at medium and elevated temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 473, 58-64.	5.6	31
64	Defects related to incipient melting in Al–Si–Cu–Mg alloys. Materials & Design, 2013, 52, 947-956.	5.1	31
65	Influence of additions of Zr, Ti–B, Sr, and Si as well as of mold temperature on the hot-tearing susceptibility of an experimental Al–2% Cu–1%ÂSi alloy. Journal of Materials Science, 2012, 47, 4146-4158.	3.7	30
66	On the impact toughness of Al–Si cast alloys. Materials and Design, 2016, 91, 388-397.	7.0	30
67	Effect of Aging Conditions on Precipitation Hardening in Al–Si–Mg and Al–Si–Cu–Mg Alloys. International Journal of Metalcasting, 2017, 11, 274-286.	1.9	30
68	The Reduced Pressure Test as a Measuring Tool in the Evaluation of Porosity/Hydrogen Content in Al-7 Wt pct Si-10 Vol pct SiC(p) Metal Matrix Composite. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1993, 24, 1857-1868.	1.4	29
69	Role of Zr and Sc addition in controlling the microstructure and tensile properties of aluminum–copper based alloys. Materials and Design, 2015, 88, 1134-1144.	7.0	29
70	Effects of La and Ce Addition on the Modification of Al-Si Based Alloys. Advances in Materials Science and Engineering, 2016, 2016, 1-13.	1.8	29
71	Effect of melt cleanliness on the properties. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1993, 24, 1631-1645.	1.4	27
72	Effect of melt treatment, solidification conditions and porosity level on the tensile properties of 319.2 endchill aluminium castings. Journal of Materials Science, 1995, 30, 4823-4833.	3.7	27

#	Article	IF	CITATIONS
73	A Metallographic Study of Grain Refining of Sr-Modified 356 Alloy. International Journal of Metalcasting, 2017, 11, 305-320.	1.9	27
74	Mechanism of Heterogeneous Nucleation of Pores in Metals and Alloys. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1993, 24, 1845-1856.	1.4	26
75	Impact toughness of Al–Si–Cu–Mg–Fe cast alloys: Effects of minor additives and aging conditions. Materials & Design, 2014, 60, 496-509.	5.1	26
76	Microstructural characterisation of Al–Si cast alloys containing rare earth additions. Philosophical Magazine, 2018, 98, 1337-1359.	1.6	26
77	Heat treatment of 319.2 aluminium automotive alloy Part 2, Ageing behaviour. Cast Metals, 1995, 8, 107-114.	0.4	25
78	Title is missing!. Journal of Materials Science, 1997, 32, 5901-5925.	3.7	25
79	Modification of iron intermetallics by magnesium and strontium in Al-Si alloys. International Journal of Cast Metals Research, 1997, 10, 147-157.	1.0	24
80	Fragmentation and dissolution of β-Al ₅ FeSi phase during solution heat treatment of Al-13wt%Si-Fe alloys. International Journal of Cast Metals Research, 1999, 12, 145-160.	1.0	24
81	Characteristics of α-dendritic and eutectic structures in Sr-treated Al—Si casting alloys. Journal of Materials Science, 2004, 39, 215-224.	3.7	24
82	Nucleation of solid aluminum on inclusion particles injected into Al-Si-Fe alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004, 35, 3233-3250.	2.2	24
83	Dissolution of Al ₂ Cu phase in non-modified and Sr modified 319 type alloys. International Journal of Cast Metals Research, 2008, 21, 387-393.	1.0	24
84	FRACTURE BEHAVIOUR OF Al12wt.%Si0.35wt.%Mg(0?0.02)wt.%Sr CASTING ALLOYS UNDER FATIGUE TESTING. Fatigue and Fracture of Engineering Materials and Structures, 1995, 18, 385-396.	3.4	23
85	Effect of Rare Earth Metals on Porosity Formation in A356 Alloy. International Journal of Metalcasting, 2018, 12, 251-265.	1.9	23
86	Static versus dynamic thermal exposure of transition elements-containing Al-Si-Cu-Mg cast alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 739, 499-512.	5.6	21
87	A Review on the Criteria of Hot Tearing Susceptibility of Aluminum Cast Alloys. International Journal of Metalcasting, 2021, 15, 1362-1374.	1.9	21
88	Effect of Sr–Grain Refining–Si Interactions on the Microstructural Characteristics of Al–Si Hypoeutectic Alloys. International Journal of Metalcasting, 2018, 12, 343-361.	1.9	20
89	Microstructural observations on Fe-intermetallics in unmodified and Sr-modified Al-Si-Cu (A380.1) die casting alloy. International Journal of Cast Metals Research, 1999, 12, 197-210.	1.0	19
90	Role of iron in relation to silicon modification in Sr-treated 319 and 356 alloys. International Journal of Cast Metals Research, 2003, 16, 397-408.	1.0	19

#	Article	IF	CITATIONS
91	Metallurgical parameters controlling matrix/B ₄ C particulate interaction in aluminium–boron carbide metal matrix composites. International Journal of Cast Metals Research, 2013, 26, 364-373.	1.0	19
92	Effect of intermetallics on the microstructure and tensile properties of aluminum based alloys: Role of Sr, Mg and Be addition. Materials and Design, 2015, 86, 30-40.	7.0	19
93	Metallurgical Parameters Controlling the Eutectic Silicon Charateristics in Be-Treated Al-Si-Mg Alloys. Materials, 2016, 9, 78.	2.9	19
94	Influence of Oxides on Porosity Formation in Sr-Treated Alloys. International Journal of Metalcasting, 2017, 11, 729-742.	1.9	19
95	Beta Al5FeSi phase platelets-porosity formation relationship in A319.2 type alloys. International Journal of Metalcasting, 2018, 12, 55-70.	1.9	19
96	Solution heat treatment of 319 aluminium alloy containing ~0.5 wt% Mg. Part 2—microstructure and fractography. International Journal of Cast Metals Research, 1996, 9, 213-225.	1.0	18
97	Iron intermetallic phases in the Al corner of the Al-Si-Fe system. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2003, 34, 807-825.	2.2	18
98	Metallographic observations on phase precipitation in strontium-modified Al-11.7% Si alloys: Role of alloying elements. International Journal of Cast Metals Research, 2003, 15, 609-626.	1.0	18
99	Influence of fluidized sand bed heat treatment on the performance of Al–Si cast alloys. Materials & Design, 2011, 32, 1177-1193.	5.1	18
100	Effect of metallurgical parameters on the microstructure, hardness impact properties, and fractography of Al-(6.5–11.5) wt% Si based alloys. Materials and Design, 2016, 107, 426-439.	7.0	18
101	New Method of Eutectic Silicon Modification in Cast Al–Si Alloys. International Journal of Metalcasting, 2017, 11, 475-493.	1.9	18
102	Effect of morphological changes of eutectic Si particles on the ambient and high temperature tensile properties of Zr containing Al–Si alloys. Journal of Materials Research and Technology, 2020, 9, 5962-5981.	5.8	18
103	Porosity formation in Al-9 wt% Si-3 wt% Cu-X alloy systems: measurements of porosity. Journal of Materials Science, 1996, 31, 1243-1254.	3.7	16
104	Influence of composition, Sr modification, and annealing treatment on the structure and properties of cast Al-4 pct Mg alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2003, 34, 115-129.	2.2	16
105	Effect of Transition Metals on the Tensile Properties of 354 Alloy: Role of Precipitation Hardening. International Journal of Metalcasting, 2017, 11, 413-427.	1.9	16
106	Effect of Rare Earth Metals on the Mechanical Properties and Fractography of Al–Si-Based Alloys. International Journal of Metalcasting, 2020, 14, 108-124.	1.9	16
107	Title is missing!. Journal of Materials Science, 1997, 32, 5927-5944.	3.7	15
108	Effects of Bi and Ca addition on the characteristics of eutectic Si particles in Sr-modified 319 alloys. International Journal of Cast Metals Research, 2003, 15, 551-564.	1.0	15

#	Article	IF	CITATIONS
109	Role of cerium, lanthanum, and strontium additions in an Al – Si – Mg (A356) alloy. International Journal of Materials Research, 2016, 107, 446-458.	0.3	15
110	Effect of β-Al5FeSi and π-Al8Mg3FeSi6 Phases on the Impact Toughness and Fractography of Al–Si–Mg-Based Alloys. International Journal of Metalcasting, 2018, 12, 148-163.	1.9	15
111	A Review Study on the Main Sources of Porosity in Al-Si Cast Alloys. Advances in Materials Science and Engineering, 2021, 2021, 1-16.	1.8	15
112	The Use of Rare Earth Metals in Al–Si–Cu Casting Alloys. International Journal of Metalcasting, 2022, 16, 535-552.	1.9	15
113	Strengthening precipitates and mechanical performance of Al–Si–Cu–Mg cast alloys containing transition elements. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 820, 141497.	5.6	15
114	Effect of heat treatment on the microstructure, tensile properties, and fracture behavior of permanent mold Al-10 wt pct Si-0.6 wt pct Mg/SiC/10p composite castings. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1994, 25, 2247-2263.	2.2	14
115	Intermetallic phases observed in non-modified and Sr modified Al–Si cast alloys containing mischmetal. International Journal of Cast Metals Research, 2013, 26, 1-15.	1.0	14
116	The Effect of Bi-Sr and Ca-Sr Interactions on the Microstructure and Tensile Properties of Al-Si-Based Alloys. Materials, 2016, 9, 126.	2.9	14
117	Effect of Rare Earth Metals, Sr, and Ti Addition on the Microstructural Characterization of A413.1 Alloy. Advances in Materials Science and Engineering, 2017, 2017, 1-12.	1.8	14
118	Effect of the Addition of La and Ce on the Solidification Behavior of Al–Cu and Al–Si–Cu Cast Alloys. International Journal of Metalcasting, 2020, 14, 191-206.	1.9	14
119	Statistical analysis of porosity in Al-9 wt% Si-3 wt% Cu-X alloy systems. Journal of Materials Science, 1996, 31, 4725-4740.	3.7	13
120	Aging behavior of 359-type Al–9%Si–0.5%Mg casting alloys. Journal of Materials Science, 2012, 47, 1331-1338.	3.7	13
121	Effect of Mg addition of microstructure of 319 type alloys. International Journal of Cast Metals Research, 2013, 26, 354-363.	1.0	13
122	Thermal Analysis for Detection of Zr-Rich Phases in Al–Si–Cu–Mg 354-Type Alloys. International Journal of Metalcasting, 2017, 11, 428-439.	1.9	13
123	Effect of Aluminum Addition on the Microstructure, Tensile Properties, and Fractography of Cast Mg-Based Alloys. Advances in Materials Science and Engineering, 2017, 2017, 1-10.	1.8	13
124	Effect of Sr–Grain Refiner–Si Interactions on the Microstructure Characteristics of Al–Si Hypereutectic Alloys. International Journal of Metalcasting, 2018, 12, 307-320.	1.9	13
125	Melting and solidification characteristics of Zr-, Ni-, and Mn-containing 354-type Al-Si-Cu-Mg cast alloys. Philosophical Magazine, 2019, 99, 1633-1655.	1.6	13
126	Intermetallics Formation during Solidification of Al-Si-Cu-Mg Cast Alloys. Materials, 2022, 15, 1335.	2.9	13

#	Article	IF	CITATIONS
127	Effects of grain refiner additions (Zr, Ti–B) and of mould variables on hot tearing susceptibility of recently developed Al–2 wt-%Cu alloy. International Journal of Cast Metals Research, 2013, 26, 308-317.	1.0	12
128	Porosity Formation in Al–Si Sand Mold Castings. International Journal of Metalcasting, 2017, 11, 812-822.	1.9	12
129	Spheroidization and Coarsening of Eutectic Si Particles in Al-Si-Based Alloys. Advances in Materials Science and Engineering, 2021, 2021, 1-16.	1.8	12
130	The Concept of Quality Index and Its Application for Al–Si Cast Alloys. International Journal of Metalcasting, 2021, 15, 1197-1212.	1.9	12
131	On thermal analysis, macrostructure and microstructure of grain refined Al–Si–Mg cast alloys: role of Sr addition. International Journal of Cast Metals Research, 2014, 27, 257-266.	1.0	11
132	Effect of grain refining and Sr modification on Prefil measurement sensitivity in 356 alloys using electron probe microanalysis technique. International Journal of Cast Metals Research, 2004, 17, 79-87.	1.0	10
133	Effects of aging parameters on the quality of 413-type commercial alloys. Materials & Design, 2009, 30, 1014-1025.	5.1	10
134	Optimizing the Heat Treatment of High-Strength 7075-Type Wrought Alloys: A Metallographic Study. International Journal of Metalcasting, 2016, 10, 264-275.	1.9	10
135	Mechanical Performance of Zr-Containing 354-Type Al-Si-Cu-Mg Cast Alloy: Role of Additions and Heat Treatment. Advances in Materials Science and Engineering, 2018, 2018, 1-17.	1.8	10
136	Some aspects of grain refining of Al-Si cast alloys. International Journal of Cast Metals Research, 2019, 32, 1-14.	1.0	10
137	Effects of Alloying Elements and Testing Temperature on the Q-Index of Al–Si Based Alloys. International Journal of Metalcasting, 2018, 12, 839-852.	1.9	9
138	Grain refining of Al-Si alloys using Al-10% Ti master alloy: role of Zr addition. International Journal of Cast Metals Research, 2019, 32, 46-58.	1.0	9
139	Role of Heat Treatment on the Tensile Properties and Fractography of Al–1.2Si–2.4Cu and Al–8.0Si–2.4Cu Cast Alloys Modified with Ce, La and Sr Addition. International Journal of Metalcasting, 2020, 14, 218-242.	1.9	9
140	Effect of Sr-P Interaction on the Microstructure and Tensile Properties of A413.0 Type Alloys. Advances in Materials Science and Engineering, 2016, 2016, 1-11.	1.8	8
141	Effect of Additions of SiC and Al2O3 Particulates on the Microstructure and Tensile Properties of Al–Si–Cu–Mg Cast Alloys. International Journal of Metalcasting, 2016, 10, 253-263.	1.9	8
142	Effect of Fe, Sr, P, Ti and Undercooling on the Precipitation of β-Al5FeSi in A319.2 Type Alloys. International Journal of Metalcasting, 2017, 11, 675-687.	1.9	8
143	Inclusion Measurement and Identification in Mg-Based Alloys: Application of the Brightimeter Technique. International Journal of Metalcasting, 2018, 12, 2-19.	1.9	8
144	Inclusion Measurements in Al–Si Foundry Alloys Using Qualiflash and Prefil Filtration Techniques. International Journal of Metalcasting, 2018, 12, 625-642.	1.9	8

#	Article	IF	CITATIONS
145	On the Elevated Temperature, Tensile Properties of Al-Cu Cast Alloys: Role of Heat Treatment. Advances in Materials Science and Engineering, 2019, 2019, 1-15.	1.8	8
146	Effect of Extended Thermal Exposure and Alloying Elements on the Morphology of Eutectic Si in Al–Si Cast Alloys. International Journal of Metalcasting, 2020, 14, 1013-1024.	1.9	8
147	Effect of Transition Metals Addition on Tensile Properties of Al–Si–Cu-Based Alloys at 25°C and 250°C: Role of Heat Treatment. International Journal of Metalcasting, 2021, 15, 60-75.	1.9	8
148	Effect of additives and heat treatment on the tensile properties of 354 alloy at 25 °C and 250 °C. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 708, 77-90.	5.6	7
149	Effect of Metallurgical Parameters on the Performance of Al-2%Cu-Based Alloys. International Journal of Metalcasting, 2017, 11, 581-597.	1.9	7
150	Effect of Ni, Mn, Sc, and Zr Addition on the Tensile Properties of 354-Type Alloys at Ambient Temperature. International Journal of Metalcasting, 2017, 11, 396-412.	1.9	7
151	Effect of Solidification Rate and Rare Earth Metal Addition on the Microstructural Characteristics and Porosity Formation in A356 Alloy. Advances in Materials Science and Engineering, 2017, 2017, 1-19.	1.8	7
152	Effect of Ni and Mn Additions on the Ambient and High-Temperature Performance of Zr-Containing Al–Si–Cu–Mg-Based Alloys: Role of Precipitation Hardening. International Journal of Metalcasting, 2018, 12, 825-838.	1.9	7
153	Rare Earth Metal-Based Intermetallics Formation in Al–Cu–Mg and Al–Si–Cu–Mg Alloys: A Metallographic Study. Advances in Materials Science and Engineering, 2018, 2018, 1-15.	1.8	7
154	Effect of Melt Temperature on the Effectiveness of the Grain Refining in Al-Si Castings. Advances in Materials Science and Engineering, 2018, 2018, 1-11.	1.8	7
155	Effects of Addition of Transition Metals on Intermetallic Precipitation in Al–2%Cu–1%Si-Based Alloys. International Journal of Metalcasting, 2018, 12, 574-588.	1.9	7
156	Measurements of oxide films in Al-(6–17) wt%Si foundry alloys using the Qualiflash filtration technique. International Journal of Cast Metals Research, 1999, 12, 49-65.	1.0	6
157	Mechanical characterisation and quality index of A356-type aluminium castings heat treated using fluidised bed quenching. Materials Science and Technology, 2013, 29, 412-425.	1.6	6
158	Microstructural Characterization of Beryllium Treated Al-Si Alloys. Advances in Materials Science and Engineering, 2015, 2015, 1-10.	1.8	6
159	On the Impact Properties and Fracture Mechanisms of A356.2-Type Cast Alloys. International Journal of Metalcasting, 2017, 11, 766-777.	1.9	6
160	Phase precipitation in transition metal-containing 354-type alloys. International Journal of Materials Research, 2017, 108, 108-125.	0.3	6
161	Response of Varying Levels of Silicon and Transition Elements on Room- and Elevated-Temperature Tensile Properties in an Al–Cu Alloy. International Journal of Metalcasting, 2018, 12, 396-414.	1.9	6
162	On the Enhancement of the Microstructure and Tensile Properties of an Al–Cu Based Cast Alloy. Metallography, Microstructure, and Analysis, 2019, 8, 757-769.	1.0	6

#	Article	IF	CITATIONS
163	Effect of metallurgical parameters on the drilling and tapping characteristics of aluminum cast alloys. International Journal of Advanced Manufacturing Technology, 2019, 105, 1357-1370.	3.0	6
164	Effects of Alloying Elements Additions on Ambient Temperature Performance of Al–Si–Cu–Mg Base Alloys. International Journal of Metalcasting, 2021, 15, 1385-1401.	1.9	6
165	On the Microstructure, Hardness and Impact Toughness of 356 and 413 Alloys. International Journal of Metalcasting, 2017, 11, 240-254.	1.9	5
166	On the Mechanical Properties of Lost Foam Cast A356 Automotive Components: Effects of Melt Treatment and Solidification Conditions. International Journal of Metalcasting, 2017, 11, 494-505.	1.9	5
167	On the Impact Properties and Fractography of Al–11%Si Casting Alloy. International Journal of Metalcasting, 2018, 12, 36-54.	1.9	5
168	Intermetallic precipitation in rare earth-treated A413.1 alloy: A metallographic study. International Journal of Materials Research, 2018, 109, 157-171.	0.3	5
169	Hardening of Al–Si–Cu–Mg Cast Alloys: Role of Ag and Zn addition. International Journal of Metalcasting, 2022, 16, 3-19.	1.9	5
170	Various Aspects Influencing the Fracture Behavior of Impact-Tested Zr-Containing Al–Si–Cu–Mg–354-Type Alloys. International Journal of Metalcasting, 2021, 15, 1282-1297.	1.9	5
171	Effects of Trace Elements on the Microstructural and Machinability Characteristics of Al–Si–Cu–Mg Castings. Materials, 2022, 15, 377.	2.9	5
172	Effect of Intermetallics and Tramp Elements on Porosity Formation and Hardness of Al–Si–Mg and Al–Si–Mg and Al–Si–Mg Alloys. International Journal of Metalcasting, 2023, 17, 664-681.	1.9	5
173	Effect of Mg Content and Heat Treatment on the Mechanical Properties of Low Pressure Die-Cast 380 Alloy. Advances in Materials Science and Engineering, 2016, 2016, 1-12.	1.8	4
174	Influence of Metallurgical Parameters on the Impact Toughness of Near Eutectic Al–Si Alloys. International Journal of Metalcasting, 2016, 10, 276-288.	1.9	4
175	On the Enhancement of the Impact Toughness of A319 Alloys: Role of Mg Content and Melt Treatment. International Journal of Metalcasting, 2017, 11, 536-551.	1.9	4
176	Effect of Solidification Parameters on the Microstructure and Tensile Properties of 319-Type Alloys. International Journal of Metalcasting, 2017, 11, 552-567.	1.9	4
177	Measurement of Particles in Molten Al–Si Alloys Applying the Ultrasonic Technique. International Journal of Metalcasting, 2018, 12, 235-250.	1.9	4
178	Effects of heat treatment and testing temperature on the tensile properties of Al–Cu and Al–Cu–Si based alloys. International Journal of Materials Research, 2018, 109, 314-331.	0.3	4
179	Effect of Microalloying Elements on the Heat Treatment Response and Tensile Properties of Al-Si-Mg Alloys. , 2018, , .		4
180	Development of Residual Stresses in Al–Si Engine Blocks Subjected to Different Metallurgical Parameters. International Journal of Metalcasting, 2020, 14, 25-36.	1.9	4

#	Article	IF	CITATIONS
181	Role of the Addition of La and Ce on the Cooling Characteristics and Porosity Formation in A356 and A413 Alloys. International Journal of Metalcasting, 2022, 16, 553-572.	1.9	4
182	Effect of Minor Addition of Ni and Zr on the High-Temperature Performance of Al–Si–Cu–Mg Cast Alloys. International Journal of Metalcasting, 2022, 16, 1235-1251.	1.9	4
183	Effects of Free-Cutting Elements Addition on the Microstructure, Hardness, and Machinability of Al-11%Si–Cu–Mg Casting Alloys. International Journal of Metalcasting, 2022, 16, 1915-1931.	1.9	4
184	Mechanical Performance and Precipitation Behavior in Al-Si-Cu-Mg Cast Alloys: Effect of Prolonged Thermal Exposure. Materials, 2022, 15, 2830.	2.9	4
185	Serrated Flow and Enhanced Ductility in Coarse-Grained Al-Mg Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 1028-1037.	2.2	3
186	Effect of Mold Type on the Microstructure and Tensile Properties of A356 Alloy. International Journal of Metalcasting, 2017, 11, 523-535.	1.9	3
187	Metallurgical Aspects of Inclusion Assessment in Al–6%Si Casting Alloy Using the LiMCA Technique. International Journal of Metalcasting, 2018, 12, 643-657.	1.9	3
188	Relation between residual stresses and microstructure evolution in Al–Si alloys based on different casting parameters. Philosophical Magazine, 2019, 99, 284-305.	1.6	3
189	Effect of Transition Metals Addition on the Microstructure and Incipient Melting of 354-Based Alloys. International Journal of Metalcasting, 2020, 14, 47-58.	1.9	3
190	Effect of tool quality on the machinability characteristics of Al-Cu and Al-Si cast alloys. International Journal of Advanced Manufacturing Technology, 2020, 106, 1317-1326.	3.0	3
191	Metallurgical Parameters Controlling Fragmentation and Spheroidization Processes of Eutectic Si Particles in Al-Si Cast Alloys. International Journal of Metalcasting, 2022, 16, 1709-1731.	1.9	3
192	Assessment of the Effect of Mg Addition on the Solidification Behavior, Tensile and Impact Properties of Al–Si–Cu Cast Alloys. International Journal of Metalcasting, 2023, 17, 82-108.	1.9	3
193	A Study on the Factors Enhancing the High-Temperature Strength of B319.2-Type Alloys. International Journal of Metalcasting, 2023, 17, 648-663.	1.9	3
194	Role of P and Fe on the precipitation of copper intermetallics in 319 alloys. Journal of Materials Science Letters, 2003, 22, 585-587.	0.5	2
195	Effect of rapid heating on quality assessment of 356 and 319 aluminium cast alloys using fluidised bed. International Journal of Cast Metals Research, 2012, 25, 129-143.	1.0	2
196	Effect of multi-temperature aging on the characterization of aluminum based castings heat treated using fluidized bed technique. Metals and Materials International, 2013, 19, 783-802.	3.4	2
197	Influence of Fluidized Bed Quenching on the Mechanical Properties and Quality Index of T6 Tempered B319.2-Type Aluminum Alloys. Journal of Materials Engineering and Performance, 2013, 22, 3476-3489.	2.5	2
198	Ni- and Zr-Based Intermetallics in Al–Si–Cu–Mg Cast Alloys. Metallography, Microstructure, and Analysis, 2014, 3, 408-420.	1.0	2

#	Article	IF	CITATIONS
199	Microstructural evolution during solidification of Al–Cu-based alloys. International Journal of Materials Research, 2015, 106, 1144-1153.	0.3	2
200	Milling parameters of Al-Cu and Al-Si cast alloys. International Journal of Advanced Manufacturing Technology, 2019, 104, 3731-3743.	3.0	2
201	High-Temperature Tensile Fractography of Zr-, Ni-, and Mn-Containing Al-Si-Cu-Mg Cast Alloys. Advances in Materials Science and Engineering, 2020, 2020, 1-11.	1.8	2
202	Change of Tensile Properties with Aging Time and Temperature in Al-Si-Cu-Mg 354 Cast Alloys with/without Minor Addition of Ni and/or Zr. Advances in Materials Science and Engineering, 2021, 2021, 1-18.	1.8	2
203	Effect of Dispersoids and Intermetallics on Hardening the Al-Si-Cu-Mg Cast Alloys. Advances in Materials Science and Engineering, 2021, 2021, 1-15.	1.8	2
204	Effect of Rare Earth Metals (Ce and La) Addition on the Performance of Al-Si-Cu-Mg Cast Alloys. International Journal of Metalcasting, 0, , 1.	1.9	2
205	Applications of Rare Earth Metals in Al-Si Cast Alloys. , 0, , .		2
206	Effect of Ca–Sr–Mg and Bi–Sr–Mg Interactions on the Microstructural Characterization and Tensile Properties of B319 Alloy. International Journal of Metalcasting, 2022, 16, 1940-1959.	1.9	2
207	Effect of Zr and Ti Addition and Aging Treatment on the Microstructure and Tensile Properties of Al-2%Cu-Based Alloys. Materials, 2022, 15, 4511.	2.9	2
208	The Effect of Ni and Zr Additions on the Tensile Properties of Isothermally Aged Ai–Si–Cu–Mg Cast Alloys. International Journal of Metalcasting, 2022, 16, 435-457.	1.9	1
209	Effect of Iron, Copper and Heat Treatments on the Microstructure and Tensile Properties of Al-Si-Based Alloys. International Journal of Metalcasting, 0, , 1.	1.9	1
210	Premium Strength and Optimum Quality in Al-Si-Mg/Al-Si-Mg-Cu Cast Alloys Using Two Different Types of Molds. International Journal of Metalcasting, 0, , 1.	1.9	1
211	The Influence of Microstructure and Composition on the Machinability of Al-Si Alloys. , 0, , 843-848.		1
212	Effect of Zr Addition and Aging Treatment on the Tensile Properties of Al-Si-Cu-Mg Cast Alloys. , 0, , .		1
213	Evolution and Methods of Residual Stresses Measurement in Al-Si-Cu-Mg Castings: Role of Heat Treatment. International Journal of Metalcasting, 2022, 16, 1488-1506.	1.9	1
214	Appropriate Heat Treatment Procedures for Improving Strength and Quality Index in 354 Casting Alloys. International Journal of Metalcasting, 0, , 1.	1.9	1
215	Understanding the Effect of Be Addition on the Microstructure and Tensile Properties of Al–Si–Mg Cast Alloys. International Journal of Metalcasting, 2022, 16, 1777-1795.	1.9	1
216	Intermetallics Formation, Hardness and Toughness of A413.1 Type Alloys: Role of Melt and Aging Treatments. International Journal of Metalcasting, 2023, 17, 1095-1113.	1.9	1

#	Article	IF	CITATIONS
217	Effect of melt treatment on impact toughness of 356 type alloys. International Journal of Cast Metals Research, 2014, 27, 101-106.	1.0	0
218	Melt Treatment-Porosity Formation Relationship in Al-Si Cast Alloys. , 0, , .	_	0
219	Generation and Relaxation of Residual Stresses in Automotive Cylinder Blocks. , 0, , .		Ο
220	The Influence of Hot Isostatic Pressing on the Fatigue Life of Al–Si–Cu–Mg 354-T6 Casting Alloy. International Journal of Metalcasting, 0, , 1.	1.9	0
221	Why Al-B4C Metal Matrix Composites? A Review. , 0, , .		Ο
222	Assessment of the Influence of Additives on the Mechanical Properties and Machinability of Al-11%Si Cast Alloys: Application of DOE and ANOVA Methods. Materials, 2022, 15, 3297.	2.9	0
223	Effect of Free Cutting Elements on the Microstructural Evaluation and Mechanical Properties of Al–Si Cast Alloys. International Journal of Metalcasting, 0, , .	1.9	0