Kumarasamy Murugesan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1855617/publications.pdf

Version: 2024-02-01

48 papers

2,849 citations

28 h-index 214800 47 g-index

50 all docs 50 docs citations

50 times ranked

3506 citing authors

#	Article	IF	CITATIONS
1	Production of bioflocculant from <i>Klebsiella pneumoniae</i> : evaluation of fish waste extract as substrate and flocculation performance. Environmental Technology (United Kingdom), 2023, 44, 4046-4059.	2.2	3
2	Food Waste Properties. , 2021, , 11-41.		3
3	Ca2+ dependent flocculation efficiency of avian egg protein revealed unique surface specific interaction with kaolin particles: A new perception in bioflocculant research. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 603, 125177.	4.7	11
4	Plant extract as environmental-friendly green catalyst for the reduction of hexavalent chromium in tannery effluent. Environmental Technology (United Kingdom), 2018, 39, 1376-1383.	2.2	20
5	Lipid accumulation potential of oleaginous yeasts: A comparative evaluation using food waste leachate as a substrate. Bioresource Technology, 2018, 248, 221-228.	9.6	46
6	Waste-to-biofuel: production of biobutanol from sago waste residues. Environmental Technology (United Kingdom), 2017, 38, 1725-1734.	2.2	20
7	Degradation of synthetic pollutants in real wastewater using laccase encapsulated in core–shell magnetic copper alginate beads. Bioresource Technology, 2016, 216, 203-210.	9.6	116
8	Sludge conditioning using biogenic flocculant produced by Acidithiobacillus ferrooxidans for enhancement in dewaterability. Bioresource Technology, 2016, 217, 179-185.	9.6	28
9	Improved dewatering of CEPT sludge by biogenic flocculant from Acidithiobacillus ferrooxidans. Water Science and Technology, 2016, 73, 843-848.	2.5	9
10	Dewatering of saline sewage sludge using iron-oxidizing bacteria: Effect of substrate concentration. Bioresource Technology, 2016, 213, 31-38.	9.6	22
11	Fate of extracellular polymeric substances of anaerobically digested sewage sludge during pre-dewatering conditioning with Acidithiobacillus ferrooxidans culture. Bioresource Technology, 2016, 217, 173-178.	9.6	26
12	Aerobic bacterial catabolism of persistent organic pollutants $\hat{a} \in \mathbb{C}^n$ potential impact of biotic and abiotic interaction. Current Opinion in Biotechnology, 2016, 38, 71-78.	6.6	30
13	Influence of fermented tannery solid waste on morphological, biochemical, yield and nutritional responses of tomato plants. Environmental Science and Pollution Research, 2015, 22, 4327-4335.	5.3	7
14	Modified phyto-waste Terminalia catappa fruit shells: a reusable adsorbent for the removal of micropollutant diclofenac. RSC Advances, 2015, 5, 30950-30962.	3.6	61
15	Characterization of a solvent, surfactant and temperature-tolerant laccase from Pleurotus sp. MAK-II and its dye decolorizing property. Biotechnology Letters, 2015, 37, 2403-2409.	2.2	13
16	Influence of ferrous ions on extracellular polymeric substances content and sludge dewaterability during bioleaching. Bioresource Technology, 2015, 179, 78-83.	9.6	60
17	Flocculation and dewaterability of chemically enhanced primary treatment sludge by bioaugmentation with filamentous fungi. Bioresource Technology, 2014, 168, 198-203.	9.6	41
18	Ferric biogenic flocculant produced by Acidithiobacillus ferrooxidans enable rapid dewaterability of municipal sewage sludge: A comparison with commercial cationic polymer. International Biodeterioration and Biodegradation, 2014, 96, 105-111.	3.9	28

#	Article	IF	Citations
19	Enhanced dewaterability of anaerobically digested sewage sludge using Acidithiobacillus ferrooxidans culture as sludge conditioner. Bioresource Technology, 2014, 169, 374-379.	9.6	39
20	Effects of inorganic nanoparticles on viability and catabolic activities of Agrobacterium sp. PH-08 during biodegradation of dibenzofuran. Biodegradation, 2014, 25, 655-668.	3.0	15
21	Remediation of Trichloroethylene by FeS-Coated Iron Nanoparticles in Simulated and Real Groundwater: Effects of Water Chemistry. Industrial & Engineering Chemistry Research, 2013, 52, 9343-9350.	3.7	134
22	Detoxification of malachite green by <i>Pleurotus florida </i> laccase produced under solid-state fermentation using agricultural residues. Environmental Technology (United Kingdom), 2013, 34, 139-147.	2.2	28
23	Coupling microbial catabolic actions with abiotic redox processes: A new recipe for persistent organic pollutant (POP) removal. Biotechnology Advances, 2013, 31, 246-256.	11.7	29
24	Integrated hybrid treatment for the remediation of 2,3,7,8-tetrachlorodibenzo-p-dioxin. Science of the Total Environment, 2012, 435-436, 563-566.	8.0	38
25	Laccaseâ€catalysed oxidations of naturally occurring phenols: from <i>in vivo</i> biosynthetic pathways to green synthetic applications. Microbial Biotechnology, 2012, 5, 318-332.	4.2	193
26	Degradation of polybrominated diphenyl ethers by a sequential treatment with nanoscale zero valent iron and aerobic biodegradation. Journal of Chemical Technology and Biotechnology, 2012, 87, 216-224.	3.2	93
27	A Catabolic Activity of Sphingomonas wittichii RW1 in the Biotransformation of Carbazole. Water, Air, and Soil Pollution, 2012, 223, 943-949.	2.4	3
28	Effect of Fe–Pd bimetallic nanoparticles on Sphingomonas sp. PH-07 and a nano-bio hybrid process for triclosan degradation. Bioresource Technology, 2011, 102, 6019-6025.	9.6	58
29	Triclosan susceptibility and co-metabolism – A comparison for three aerobic pollutant-degrading bacteria. Bioresource Technology, 2011, 102, 2206-2212.	9.6	122
30	Mineralization and transformation of monofluorophenols by Pseudonocardia benzenivorans. Applied Microbiology and Biotechnology, 2010, 87, 1569-1577.	3.6	24
31	Laccaseâ€catalysed polymeric dye synthesis from plantâ€derived phenols for potential application in hair dyeing: Enzymatic colourations driven by homoâ€or heteroâ€polymer synthesis. Microbial Biotechnology, 2010, 3, 324-335.	4.2	82
32	Production of laccase from <i>Pleurotus florida</i> using agroâ€wastes and efficient decolorization of Reactive blue 198. Journal of Basic Microbiology, 2010, 50, 360-367.	3. 3	45
33	Degradation of triclosan by an integrated nano-bio redox process. Bioresource Technology, 2010, 101, 6354-6360.	9.6	89
34	Enhanced transformation of triclosan by laccase in the presence of redox mediators. Water Research, 2010, 44, 298-308.	11.3	118
35	Biodegradation of 1,4-dioxane and transformation of related cyclic compounds by a newly isolated Mycobacterium sp. PH-06. Biodegradation, 2009, 20, 511-519.	3.0	96
36	Enhanced transformation of malachite green by laccase of Ganoderma lucidum in the presence of natural phenolic compounds. Applied Microbiology and Biotechnology, 2009, 82, 341-350.	3.6	87

#	Article	IF	CITATIONS
37	Effect of metal ions on reactive dye decolorization by laccase from Ganoderma lucidum. Journal of Hazardous Materials, 2009, 168, 523-529.	12.4	138
38	Use of grape seed and its natural polyphenol extracts as a natural organic coagulant for removal of cationic dyes. Chemosphere, 2009, 77, 1090-1098.	8.2	70
39	Synergistic effect of laccase mediators on pentachlorophenol removal by Ganoderma lucidum laccase. Applied Microbiology and Biotechnology, 2008, 81, 783-790.	3.6	60
40	Bioremediation of PCDD/Fs-contaminated municipal solid waste incinerator fly ash by a potent microbial biocatalyst. Journal of Hazardous Materials, 2008, 157, 114-121.	12.4	46
41	Decolourization of reactive black 5 by laccase: Optimization by response surface methodology. Dyes and Pigments, 2007, 75, 176-184.	3.7	145
42	Decolorization of reactive dyes by a thermostable laccase produced by Ganoderma lucidum in solid state culture. Enzyme and Microbial Technology, 2007, 40, 1662-1672.	3.2	232
43	Biodegradation of diphenyl ether and transformation of selected brominated congeners by Sphingomonas sp. PH-07. Applied Microbiology and Biotechnology, 2007, 77, 187-194.	3.6	125
44	Author's reply to comment on "Biological removal of polychlorinated dibenzo-p-dioxins from incinerator fly ash by sphingomonas wittichii RW1―by Rolf U. Halden. Water Research, 2006, 40, 2246-2247.	11.3	2
45	Mass spectrometric analysis of isotope effects in bioconversion of benzene to cyclohexanone. International Journal of Mass Spectrometry, 2006, 252, 256-260.	1.5	3
46	Purification and characterization of laccase produced by a white rot fungus Pleurotus sajor-caju under submerged culture condition and its potential in decolorization of azo dyes. Applied Microbiology and Biotechnology, 2006, 72, 939-946.	3.6	100
47	Biological removal of polychlorinated dibenzo-p-dioxins from incinerator fly ash by Sphingomonas wittichii RW1. Water Research, 2005, 39, 4651-4660.	11.3	43
48	Biodegradation of Dibenzo-p-dioxin, Dibenzofuran, and Chlorodibenzo-p-dioxins by Pseudomonas veronii PH-03. Biodegradation, 2004, 15, 303-313.	3.0	48