
Graham Johnston

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1855446/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	GABA allosteric modulators: An overview of recent developments in non-benzodiazepine modulators. European Journal of Medicinal Chemistry, 2019, 171, 434-461.	2.6	41
2	GABAâ€í•receptors: distinctive functions and molecular pharmacology. British Journal of Pharmacology, 2017, 174, 1881-1894.	2.7	39
3	Antidepressant, Anxiolytic and Antinociceptive Activities of Constituents from Rosmarinus Officinalis. Journal of Pharmacy and Pharmaceutical Sciences, 2015, 18, 448.	0.9	60
4	Interactions of Flavonoids with Ionotropic GABA Receptors. Advances in Pharmacology, 2015, 72, 189-200.	1.2	34
5	Modulation of Ionotropic GABA Receptors by 6-Methoxyflavanone and 6-Methoxyflavone. Neurochemical Research, 2014, 39, 1068-1078.	1.6	22
6	GABAA Receptors Containing 🖥 Subunits Contribute to In Vivo Effects of Ethanol in Mice. PLoS ONE, 2014, 9, e85525.	1.1	50
7	Potency of GABA at human recombinant GABAA receptors expressed in Xenopus oocytes: a mini review. Amino Acids, 2013, 44, 1139-1149.	1.2	58
8	Design, Synthesis, and Pharmacological Evaluation of Fluorescent and Biotinylated Antagonists of ï ₁ GABA _C Receptors. ACS Medicinal Chemistry Letters, 2013, 4, 402-407.	1.3	22
9	γ-Aminobutyric Acid(C) (GABA _C) Selective Antagonists Derived from the Bioisosteric Modification of 4-Aminocyclopent-1-enecarboxylic Acid: Amides and Hydroxamates. Journal of Medicinal Chemistry, 2013, 56, 5626-5630.	2.9	13
10	Mixed antagonistic effects of the ginkgolides at recombinant human । Neuropharmacology, 2012, 63, 1127-1139.	2.0	12
11	Differentiating Enantioselective Actions of GABOB: A Possible Role for Threonine 244 in the Binding Site of GABA _C ï ₁ Receptors. ACS Chemical Neuroscience, 2012, 3, 665-673.	1.7	8
12	Structurally Diverse GABA Antagonists Interact Differently with Open and Closed Conformational States of the Ï< sub>1 Receptor. ACS Chemical Neuroscience, 2012, 3, 293-301.	1.7	13
13	2′â€Methoxyâ€6â€methylflavone: a novel anxiolytic and sedative with subtype selective activating and modulating actions at GABA _A receptors. British Journal of Pharmacology, 2012, 165, 880-896.	2.7	44
14	Flavanâ€3â€ol esters: new agents for exploring modulatory sites on GABA _A receptors. British Journal of Pharmacology, 2012, 165, 965-977.	2.7	23
15	Low nanomolar GABA effects at extrasynaptic α4î²1/î²3î´ GABAA receptor subtypes indicate a different binding mode for GABA at these receptors. Biochemical Pharmacology, 2012, 84, 549-557.	2.0	37
16	Novel Cyclic Phosphinic Acids as GABA _C ï•Receptor Antagonists: Design, Synthesis, and Pharmacology. ACS Medicinal Chemistry Letters, 2011, 2, 11-16.	1.3	27
17	Flavonoid modulation of GABA _A receptors. British Journal of Pharmacology, 2011, 163, 234-245.	2.7	192
18	Naringin directly activates inwardly rectifying potassium channels at an overlapping binding site to tertiapinâ€Q. British Journal of Pharmacology, 2011, 163, 1017-1033.	2.7	49

GRAHAM JOHNSTON

#	Article	IF	CITATIONS
19	3-Hydroxy-2′-methoxy-6-methylflavone: A potent anxiolytic with a unique selectivity profile at GABAA receptor subtypes. Biochemical Pharmacology, 2011, 82, 1971-1983.	2.0	37
20	ldentification of Benzopyranâ€4â€one Derivatives (Isoflavones) as Positive Modulators of GABA _A Receptors. ChemMedChem, 2011, 6, 1340-1346.	1.6	19
21	Medicinal chemistry of ϕGABA _C receptors. Future Medicinal Chemistry, 2011, 3, 197-209.	1.1	41
22	Neurochemicals for the Investigation of GABAC Receptors. Neurochemical Research, 2010, 35, 1970-1977.	1.6	36
23	Microwave-enhanced synthesis of 2,3,6-trisubstituted pyridazines: application to four-step synthesis of gabazine (SR-95531). Organic and Biomolecular Chemistry, 2010, 8, 4131.	1.5	16
24	Novel, Potent, and Selective GABA _C Antagonists Inhibit Myopia Development and Facilitate Learning and Memory. Journal of Pharmacology and Experimental Therapeutics, 2009, 328, 448-457.	1.3	71
25	Synthesis and biological evaluation of flavan-3-ol derivatives as positive modulators of GABAA receptors. Bioorganic and Medicinal Chemistry, 2009, 17, 7156-7173.	1.4	27
26	Guanidino Acids Act as 🖥 GABAC Receptor Antagonists. Neurochemical Research, 2009, 34, 1704-1711.	1.6	22
27	The Flavonoid Glycosides, Myricitrin, Gossypin and Naringin Exert Anxiolytic Action in Mice. Neurochemical Research, 2009, 34, 1867-1875.	1.6	94
28	(+)- and (-)-cis-2-Aminomethylcyclopropanecarboxylic Acids Show Opposite Pharmacology at Recombinant 🖬 and 📴 GABAC Receptors. Journal of Neurochemistry, 2008, 75, 2602-2610.	2.1	48
29	Enantioselective actions of 4-amino-3-hydroxybutanoic acid and (3-amino-2-hydroxypropyl)methylphosphinic acid at recombinant GABAC receptors. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 402-404.	1.0	19
30	A Molecular Basis for Agonist and Antagonist Actions at GABA _C Receptors. Chemical Biology and Drug Design, 2008, 71, 306-327.	1.5	46
31	Novel γ-Aminobutyric Acid Ï×sub>1Receptor Antagonists; Synthesis, Pharmacological Activity and Structureâ^'Activity Relationships. Journal of Medicinal Chemistry, 2008, 51, 3825-3840.	2.9	36
32	Flavan-3-ol derivatives are positive modulators of GABAA receptors with higher efficacy for the α2 subtype and anxiolytic action in mice. Neuropharmacology, 2008, 55, 900-907.	2.0	49
33	(3-Aminocyclopentyl)methylphosphinic acids: Novel GABAC receptor antagonists. Neuropharmacology, 2007, 52, 779-787.	2.0	10
34	Modulation of Ionotropic GABA Receptors by Natural Products of Plant Origin. Advances in Pharmacology, 2006, 54, 285-316.	1.2	80
35	Diastereoselective synthesis of (±)-(3-aminocyclopentane)alkylphosphinic acids, conformationally restricted analogues of GABA. Organic and Biomolecular Chemistry, 2006, 4, 2642-2649.	1.5	14
36	Mixed antagonistic effects of bilobalide at Ïl GABAC receptor. Neuroscience, 2006, 137, 607-617.	1.1	9

GRAHAM JOHNSTON

#	Article	IF	CITATIONS
37	Enantiomers of cis-constrained and flexible 2-substituted GABA analogues exert opposite effects at recombinant GABAC receptors. Bioorganic and Medicinal Chemistry, 2006, 14, 447-455.	1.4	23
38	GABAA Receptor Channel Pharmacology. Current Pharmaceutical Design, 2005, 11, 1867-1885.	0.9	240
39	Charged Residues at the 2′ Position of Human GABAC l̃i Receptors Invert Ion Selectivity and Influence Open State Probability. Journal of Biological Chemistry, 2004, 279, 54153-54160.	1.6	27
40	The dietary flavonoids apigenin and (â^')-epigallocatechin gallate enhance the positive modulation by diazepam of the activation by GABA of recombinant GABAA receptors. Biochemical Pharmacology, 2004, 68, 1631-1638.	2.0	129
41	Synthesis and resolution of 2-methyl analogues of GABA. Tetrahedron: Asymmetry, 2004, 15, 1745-1751.	1.8	15
42	Mutations of the 2′ proline in the M2 domain of the human GABAC ÏI subunit alter agonist responses. Neuropharmacology, 2004, 46, 770-781.	2.0	18
43	Convulsant actions of calycanthine. Toxicology and Applied Pharmacology, 2003, 190, 58-64.	1.3	19
44	Aza-THIP and related analogues of THIP as GABA C antagonists. Bioorganic and Medicinal Chemistry, 2003, 11, 4891-4896.	1.4	23
45	Semisynthetic preparation of amentoflavone: A negative modulator at GABAA receptors. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 2281-2284.	1.0	59
46	GABAC Receptors as Drug Targets. CNS and Neurological Disorders, 2003, 2, 260-268.	4.3	73
47	trans -4-Amino-2-methylbut-2-enoic acid (2-MeTACA) and (±)-trans -2-aminomethylcyclopropanecarboxylic acid ((±)-TAMP) can differentiate rat ï3 from human ï1 and ï2 recombinant GABAC receptors. British Journal of Pharmacology, 2002, 135, 883-890.	2.7	29
48	GABA-Activated Ligand Gated Ion Channels:  Medicinal Chemistry and Molecular Biology. Journal of Medicinal Chemistry, 2000, 43, 1427-1447.	2.9	326
49	Aminomethyl-2,6-difluorophenols as a novel class of increased lipophilicity GABAC receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 3093-3098.	1.0	5
50	THE 'ABC' OF GABA RECEPTORS: A BRIEF REVIEW. Clinical and Experimental Pharmacology and Physiology, 1999, 26, 937-940.	0.9	347
51	Stereoselective interaction of thiopentone enantiomers with the GABAA receptor. British Journal of Pharmacology, 1999, 128, 77-82.	2.7	33
52	Resolution and conformational analysis of diastereoisomeric esters of cis- and trans-2-(aminomethyl)-1-carboxycyclopropanes. Tetrahedron: Asymmetry, 1998, 9, 2533-2548.	1.8	21
53	Contrasting Modes of Action of Methylglutamate Derivatives on the Excitatory Amino Acid Transporters, EAAT1 and EAAT2. Molecular Pharmacology, 1997, 51, 809-815.	1.0	109
54	Analogues of γ -aminobutyric acid (GABA) and trans -4-aminocrotonic acid (TACA) substituted in the 2 position as GABAC receptor antagonists. British Journal of Pharmacology, 1997, 122, 1551-1560.	2.7	28