Shu Beng Tor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1855394/publications.pdf

Version: 2024-02-01

45317 53794 9,336 163 45 90 citations h-index g-index papers 165 165 165 7757 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A generalised hot cracking criterion for nickel-based superalloys additively manufactured by electron beam melting. Additive Manufacturing, 2021, 37, 101633.	3.0	11
2	Reducing hot tearing by grain boundary segregation engineering in additive manufacturing: example of an AlxCoCrFeNi high-entropy alloy. Acta Materialia, 2021, 204, 116505.	7.9	115
3	Nanometer-scale precipitations in a selective electron beam melted nickel-based superalloy. Scripta Materialia, 2021, 194, 113661.	5.2	9
4	Development of an Ultrastretchable Double-Network Hydrogel for Flexible Strain Sensors. ACS Applied Materials & Samp; Interfaces, 2021, 13, 12814-12823.	8.0	97
5	3D printing of metallic micro-gears for micro-fluidic applications. Journal of Micromechanics and Molecular Physics, 2021, 06, .	1.2	2
6	Microstructure and mechanical properties of (TiB+TiC)/Ti composites fabricated in situ via selective laser melting of Ti and B4C powders. Additive Manufacturing, 2020, 36, 101466.	3.0	46
7	Machine learning in additive manufacturing: State-of-the-art and perspectives. Additive Manufacturing, 2020, 36, 101538.	3.0	230
8	Recent Advances on Highâ€Entropy Alloys for 3D Printing. Advanced Materials, 2020, 32, e1903855.	21.0	269
9	Fatigue behavior of ASTM A131 EH36 steel samples additively manufactured with selective laser melting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 777, 139049.	5.6	8
10	Anisotropic microstructure and mechanical properties of additively manufactured Co–Cr–Mo alloy using selective electron beam melting for orthopedic implants. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 765, 138270.	5.6	49
11	Improving biotribological properties and corrosion resistance of CoCrMo alloy via a Cr-GLC nanocomposite film in simulated body fluids. Surface and Coatings Technology, 2019, 378, 124840.	4.8	19
12	Revealing competitive columnar grain growth behavior and periodic microstructural banding in additively manufactured Ti-6Al-4â€V parts by selective electron beam melting. Materialia, 2019, 7, 100365.	2.7	24
13	Revealing hot tearing mechanism for an additively manufactured high-entropy alloy via selective laser melting. Scripta Materialia, 2019, 168, 129-133.	5.2	109
14	Additive manufacturing of NiTi shape memory alloys using pre-mixed powders. Journal of Materials Processing Technology, 2019, 271, 152-161.	6.3	141
15	Improvement of densification and microstructure of ASTM A131 EH36 steel samples additively manufactured via selective laser melting with varying laser scanning speed and hatch spacing. Materials Science & Description of the Materials of the Mat	5.6	36
16	Morphological Box Classification Framework for supporting 3D scanner selection. Virtual and Physical Prototyping, 2018, 13, 211-221.	10.4	1
17	Simultaneously enhanced strength and ductility for 3D-printed stainless steel 316L by selective laser melting. NPG Asia Materials, 2018, 10, 127-136.	7.9	385
18	Process parameter optimization and mechanical properties for additively manufactured stainless steel 316L parts by selective electron beam melting. Materials and Design, 2018, 147, 157-166.	7.0	108

#	Article	IF	CITATIONS
19	Scanning optical microscopy for porosity quantification of additively manufactured components. Additive Manufacturing, 2018, 21, 350-358.	3.0	40
20	Carbide precipitation characteristics in additive manufacturing of Co-Cr-Mo alloy via selective electron beam melting. Scripta Materialia, 2018, 143, 117-121.	5.2	60
21	Modeling temperature and residual stress fields in selective laser melting. International Journal of Mechanical Sciences, 2018, 136, 24-35.	6.7	208
22	Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: A critical review. Materials and Design, 2018, 139, 565-586.	7.0	913
23	Damage Boundary Detection of Partially Scanned Models. , 2018, , .		0
24	Tribological Properties of Three-Dimensionally Printed Ti–6Al–4V Material Via Electron Beam Melting Process Tested Against 100Cr6 Steel Without and With Hank's Solution. Journal of Tribology, 2018, 140, .	1.9	10
25	Tribochemical Characterization and Tribocorrosive Behavior of CoCrMo Alloys: A Review. Materials, 2018, 11, 30.	2.9	30
26	Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: A state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility. Materials Science and Engineering C, 2017, 76, 1328-1343.	7.3	381
27	Heat transfer and phase transition in the selective laser melting process. International Journal of Heat and Mass Transfer, 2017, 108, 2408-2416.	4.8	66
28	Emerging 3Dâ€Printed Electrochemical Energy Storage Devices: A Critical Review. Advanced Energy Materials, 2017, 7, 1700127.	19.5	300
29	Additive Manufacturing of Patient-Customizable Scaffolds for Tubular Tissues Using the Melt-Drawing Method. Materials, 2016, 9, 893.	2.9	13
30	Microstructure and Wear Properties of Electron Beam Melted Ti-6Al-4V Parts: A Comparison Study against As-Cast Form. Metals, 2016, 6, 284.	2.3	47
31	Hybrid microscaffold-based 3D bioprinting of multi-cellular constructs with high compressive strength: A new biofabrication strategy. Scientific Reports, 2016, 6, 39140.	3.3	97
32	Memory phenomenon in a lanthanum based bulk metallic glass. Journal of Alloys and Compounds, 2016, 672, 131-136.	5 . 5	6
33	A study on frictional behavior of PMMA against FDTS coated silicon as a function of load, velocity and temperature. Tribology International, 2016, 102, 44-51.	5.9	9
34	Automated droplet measurement (ADM): an enhanced video processing software for rapid droplet measurements. Microfluidics and Nanofluidics, 2016, 20, 1.	2.2	35
35	Selective laser melting of stainless steel 316L with low porosity and high build rates. Materials and Design, 2016, 104, 197-204.	7.0	511
36	Geometry dependence of microstructure and microhardness for selective electron beam-melted Ti–6Al–4V parts. Virtual and Physical Prototyping, 2016, 11, 183-191.	10.4	44

#	Article	IF	Citations
37	Revealing martensitic transformation and $\hat{l}\pm\hat{l}^2$ interface evolution in electron beam melting three-dimensional-printed Ti-6Al-4V. Scientific Reports, 2016, 6, 26039.	3.3	114
38	Spatial and geometrical-based characterization of microstructure and microhardness for an electron beam melted Ti–6Al–4V component. Materials and Design, 2016, 95, 287-295.	7.0	112
39	A review on the importance of surface coating of micro/nano-mold in micro/nano-molding processes. Journal of Micromechanics and Microengineering, 2016, 26, 013002.	2.6	63
40	Mechanical and tribological properties of Zr-based bulk metallic glass for sports applications. Materials and Design, 2016, 92, 667-673.	7.0	34
41	Active droplet generation in microfluidics. Lab on A Chip, 2016, 16, 35-58.	6.0	199
42	Low temperature and deformation-free bonding of PMMA microfluidic devices with stable hydrophilicity via oxygen plasma treatment and PVA coating. RSC Advances, 2015, 5, 8377-8388.	3.6	53
43	Fabrication and microstructural characterisation of additive manufactured Ti-6Al-4V parts by electron beam melting. Virtual and Physical Prototyping, 2015, 10, 13-21.	10.4	70
44	An experimental and simulation study on build thickness dependent microstructure for electron beam melted Ti–6Al–4V. Journal of Alloys and Compounds, 2015, 646, 303-309.	5.5	105
45	Investigation on processing of ASTM A131 Eh36 high tensile strength steel using selective laser melting. Virtual and Physical Prototyping, 2015, 10, 187-193.	10.4	24
46	Graded microstructure and mechanical properties of additive manufactured Ti–6Al–4V via electron beam melting. Acta Materialia, 2015, 97, 1-16.	7.9	535
47	Tribological behavior of Zr-based bulk metallic glass sliding against polymer, ceramic, and metal materials. Intermetallics, 2015, 61, 1-8.	3.9	25
48	Acoustofluidic control of bubble size in microfluidic flow-focusing configuration. Lab on A Chip, 2015, 15, 996-999.	6.0	33
49	Rapid bonding enhancement by auxiliary ultrasonic actuation for the fabrication of cyclic olefin copolymer (COC) microfluidic devices. Journal of Micromechanics and Microengineering, 2014, 24, 115020.	2.6	11
50	Effect of sputtering power on friction coefficient and surface energy of co-sputtered titanium and molybdenum disulfide coatings and its performance in micro hot-embossing. Microsystem Technologies, 2014, 20, 1069-1078.	2.0	8
51	Design, fabrication, and characterization of thermoplastic microlenses for fiber-optic probe imaging. Applied Optics, 2014, 53, 1083.	1.8	37
52	Comparison of Two Metallic Additive Manufacturing Technologies: Selective Laser Melting and Electron Beam Melting. , 2014, , .		1
53	Application of Electron Beam Melting (EBM) in Additive Manufacturing of an Impeller. , 2014, , .		14
54	Effect of injection-molding-induced residual stress on microchannel deformation irregularity during thermal bonding. Journal of Micromechanics and Microengineering, 2013, 24, 015012.	2.6	1

#	Article	IF	Citations
55	Nanotribological Phenomena, Principles and Mechanisms for MEMS., 2013, , 1-51.		2
56	Characteristics of stand-alone microlenses in fiber-based fluorescence imaging applications. Review of Scientific Instruments, 2011, 82, 043110.	1.3	4
57	Pressureless spark plasma sintering of alumina micro-channel part produced by micro powder injection molding. Scripta Materialia, 2011, 64, 237-240.	5.2	17
58	Preparation and characterization of micro components fabricated by micro powder injection molding. Materials Characterization, 2011, 62, 615-620.	4.4	13
59	Effects of processing parameters on the micro-channels replication in microfluidic devices fabricated by micro injection molding. Microsystem Technologies, 2011, 17, 1791-1798.	2.0	23
60	Investigation of final-stage sintering of various microsize structures prepared by micro powder injection molding. Applied Physics A: Materials Science and Processing, 2011, 103, 1145-1151.	2.3	5
61	Micro powder injection moulding of alumina micro-channel part. Journal of the European Ceramic Society, 2011, 31, 1049-1056.	5.7	43
62	Microstructure evolution of 316L stainless steel micro components prepared by micro powder injection molding. Powder Technology, 2011, 206, 246-251.	4.2	21
63	Modification of surface properties of silicon micro-molds by nitrogen and silicon doped diamond-like carbon coatings deposited with magnetron co-sputtering. Vacuum, 2011, 85, 1105-1107.	3.5	5
64	Metallic mould inserts for fabrication of polymer microfluidic devices. International Journal of Nanomanufacturing, 2010, 6, 66.	0.3	0
65	A teaching factory for polymer microfabrication & mp; ndash; & mp; mu; Fac. International Journal of Nanomanufacturing, 2010, 6, 137.	0.3	5
66	Improvement in lifetime and replication quality of Si micromold using N:DLC:Ni coatings for microfluidic devices. Sensors and Actuators B: Chemical, 2010, 150, 174-182.	7.8	18
67	Tribological behavior of 316L stainless steel fabricated by micro powder injection molding. Wear, 2010, 268, 1013-1019.	3.1	26
68	Optimization of compression molding of standâ€alone microlenses: Simulation and experimental results. Polymer Engineering and Science, 2010, 50, 2216-2228.	3.1	7
69	Fabrication of robust tooling for mass production of polymeric microfluidic devices. Journal of Micromechanics and Microengineering, 2010, 20, 085019.	2.6	15
70	Replication performance of Si-N-DLC-coated Si micro-molds in micro-hot-embossing. Journal of Micromechanics and Microengineering, 2010, 20, 045007.	2.6	28
71	Replication and characterization of 316L stainless steel micro-mixer by micro powder injection molding. Journal of Alloys and Compounds, 2010, 496, 293-299.	5.5	34
72	Micro-hot-embossing of 316L stainless steel micro-structures. Applied Physics A: Materials Science and Processing, 2009, 97, 925-931.	2.3	18

#	Article	IF	Citations
73	Characterisation of micro gears produced by micro powder injection moulding. Powder Technology, 2009, 188, 179-182.	4.2	47
74	Processing of Zirconium-Based Bulk Metallic Glass (BMG) Using Micro Electrical Discharge Machining (Micro-EDM). Materials and Manufacturing Processes, 2009, 24, 1242-1248.	4.7	56
75	Anti-sticking behavior of DLC-coated silicon micro-molds. Journal of Micromechanics and Microengineering, 2009, 19, 105025.	2.6	40
76	Fabrication of a stand-alone polymer microlens: design of molding apparatus, simulation and experimental results. Journal of Micromechanics and Microengineering, 2009, 19, 095005.	2.6	5
77	Constitutive modelling of microstructured components fabricated by micro powder injection molding. Acta Materialia, 2008, 56, 5560-5566.	7.9	8
78	Knowledge-based functional design of industrial robots. International Journal of Production Research, 2008, 46, 4501-4519.	7.5	7
79	Graph theoretic algorithm for automatic operation sequencing for progressive die design. International Journal of Production Research, 2008, 46, 2965-2988.	7. 5	14
80	The demolding of powder injection molded micro-structures: analysis, simulation and experiment. Journal of Micromechanics and Microengineering, 2008, 18, 075024.	2.6	15
81	Review of production of microfluidic devices: material, manufacturing and metrology. Proceedings of SPIE, 2008, , .	0.8	10
82	A hierarchical text classification system for manufacturing knowledge management and retrieval. International Journal of Knowledge Management Studies, 2008, 2, 406.	0.3	4
83	Investigation of the dimensional variation of microstructures through the µMIM process. International Journal of Nanomanufacturing, 2007, 1, 722.	0.3	0
84	Effects of thermal debinding on surface roughness in micro powder injection molding. Materials Letters, 2007, 61, 809-812.	2.6	34
85	Associative assembly design features: concept, implementation and application. International Journal of Advanced Manufacturing Technology, 2007, 32, 434-444.	3.0	52
86	Dimensional variation in production of high-aspect-ratio micro-pillars array by micro powder injection molding. Applied Physics A: Materials Science and Processing, 2007, 89, 721-728.	2.3	21
87	Fabrication of micro gear by micro powder injection molding. Microsystem Technologies, 2007, 14, 43-50.	2.0	54
88	Handling of Imbalanced Data in Text Classification: Category-Based Term Weights. , 2007, , 171-192.		7
89	Generation of possible multiple components disassembly sequence for maintenance using a disassembly constraint graph. International Journal of Production Economics, 2006, 102, 51-65.	8.9	40
90	A DSS approach to managing customer enquiries for SMEs at the customer enquiry stage. International Journal of Production Economics, 2006, 103, 332-346.	8.9	42

#	Article	lF	Citations
91	RMINE: A Rough Set Based Data Mining Prototype for the Reasoning of Incomplete Data in Condition-based Fault Diagnosis. Journal of Intelligent Manufacturing, 2006, 17, 163-176.	7.3	27
92	Analysis of demolding in micro metal injection molding. Microsystem Technologies, 2006, 12, 554-564.	2.0	13
93	Indexing and retrieval in case-based process planning for multi-stage non-axisymmetric deep drawing. International Journal of Advanced Manufacturing Technology, 2006, 28, 12-22.	3.0	26
94	Densification and grain growth of stainless steel microsize structures fabricated by \hat{l}_4 MIM. Applied Physics A: Materials Science and Processing, 2006, 83, 31-36.	2.3	10
95	Micro powder injection molding: Sintering kinetics of microstructured components. Scripta Materialia, 2006, 55, 1103-1106.	5.2	31
96	Characterization of metallic micro rod arrays fabricated by $\hat{l}\frac{1}{4}$ MIM. Materials Characterization, 2006, 57, 80-85.	4.4	25
97	Mixing and characterisation of 316L stainless steel feedstock for micro powder injection molding. Materials Characterization, 2005, 54, 230-238.	4.4	81
98	Injection molding, debinding and sintering of 316L stainless steel microstructures. Applied Physics A: Materials Science and Processing, 2005, 81, 495-500.	2.3	44
99	A graph and matrix representation scheme for functional design of mechanical products. International Journal of Advanced Manufacturing Technology, 2005, 25, 221-232.	3.0	27
100	A knowledge-based blackboard framework for stamping process planning in progressive die design. International Journal of Advanced Manufacturing Technology, 2005, 26, 774-783.	3.0	29
101	Surface roughness of microstructured component fabricated by νMIM. Materials Science & Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 396, 311-319.	5.6	22
102	An object-oriented intelligent disassembly sequence planner for maintenance. Computers in Industry, 2005, 56, 699-718.	9.9	72
103	Injection molding of 3D microstructures by \hat{l} PIM. Microsystem Technologies, 2005, 11, 210-213.	2.0	34
104	A variotherm mold for micro metal injection molding. Microsystem Technologies, 2005, 11, 1267-1271.	2.0	37
105	Development of an object-oriented blackboard model for stamping process planning in progressive die design. Journal of Intelligent Manufacturing, 2005, 16, 499-513.	7.3	17
106	Effects of Injection Molding Parameters on the Production of Microstructures by Micropowder Injection Molding. Materials and Manufacturing Processes, 2005, 20, 977-985.	4.7	15
107	Replication of metal microstructures by micro powder injection molding. Materials & Design, 2004, 25, 729-733.	5.1	52
108	Design of a Feature-object-based Mechanical Assembly Library. Computer-Aided Design and Applications, 2004, 1, 397-403.	0.6	7

#	Article	IF	CITATIONS
109	A graph theoretic approach for stamping operations sequencing. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2004, 218, 467-471.	2.4	7
110	Processing of biocomposite Ti-6Al-4V/HA powder. Journal of Materials Science Letters, 2003, 22, 775-778.	0.5	4
111	A Tabu-enhanced genetic algorithm approach for assembly process planning. Journal of Intelligent Manufacturing, 2003, 14, 197-208.	7.3	35
112	FuncDesigner?a functional design software system. International Journal of Advanced Manufacturing Technology, 2003, 22, 295-305.	3.0	2
113	The development of a standard component library for plastic injection mould design using an object-oriented approach. International Journal of Advanced Manufacturing Technology, 2003, 22, 611-618.	3.0	35
114	Injection molding of 316L stainless steel microstructures. Microsystem Technologies, 2003, 9, 507-510.	2.0	18
115	Desktop virtual reality for maintenance training: an object oriented prototype system (V-REALISM). Computers in Industry, 2003, 52, 109-125.	9.9	128
116	A web-enhanced dynamic BOM-based available-to-promise system. International Journal of Production Economics, 2003, 84, 133-147.	8.9	39
117	WebATP: a Web-based flexible available-to-promise computation system. Production Planning and Control, 2003, 14, 662-672.	8.8	11
118	Indexing and Retrieval in Metal Stamping Die Design Using Case-based Reasoning. Journal of Computing and Information Science in Engineering, 2003, 3, 353-362.	2.7	28
119	An Intelligent, Multi-Agent Environment for Concurrent and Collaborative Configuration of Personal Computers. Concurrent Engineering Research and Applications, 2002, 10, 143-151.	3.2	1
120	Guiding functional design of mechanical products through rule-based causal behavioural reasoning. International Journal of Production Research, 2002, 40, 667-682.	7.5	32
121	Feature-based CAD-CAE integration model for injection-moulded product design. International Journal of Production Research, 2002, 40, 3737-3750.	7. 5	49
122	Ti-6A1-4V/HA composite feedstock for injection molding. Materials Letters, 2002, 56, 522-532.	2.6	37
123	Characterization of powder injection molding feedstock. Materials Characterization, 2002, 49, 313-320.	4.4	62
124	In vitro behavior of sintered powder injection molded Ti-6Al-4V/HA. Journal of Biomedical Materials Research Part B, 2002, 63, 79-87.	3.1	19
125	A Heuristic State-Space Approach to the Functional Design of Mechanical Systems. International Journal of Advanced Manufacturing Technology, 2002, 19, 235-244.	3.0	15
126	A Two-Level Modelling Approach to Acquire Functional Design Knowledge in Mechanical Engineering Systems. International Journal of Advanced Manufacturing Technology, 2002, 19, 454-460.	3.0	11

#	Article	IF	Citations
127	A Novel Representation Scheme for Disassembly Sequence Planning. International Journal of Advanced Manufacturing Technology, 2002, 20, 621-630.	3.0	64
128	A CAD-CAE Integrated Injection Molding Design System. Engineering With Computers, 2002, 18, 80-92.	6.1	40
129	Gas-assisted injection molding: the effects of process variables and gas channel geometry. Journal of Materials Processing Technology, 2002, 121, 27-35.	6.3	43
130	Spark plasma sintering of hydroxyapatite powders. Biomaterials, 2002, 23, 37-43.	11.4	202
131	Microstructures and mechanical properties of powder injection molded Ti-6Al-4V/HA powder. Biomaterials, 2002, 23, 2927-2938.	11.4	55
132	Micro-powder injection molding. Journal of Materials Processing Technology, 2002, 127, 165-168.	6.3	93
133	Automated functional design of engineering systems. Journal of Intelligent Manufacturing, 2002, 13, 119-133.	7.3	18
134	Binder system for micropowder injection molding. Materials Letters, 2001, 48, 31-38.	2.6	89
135	A Rough Set Approach to the Ordering of Basic Events in a Fault Tree for Fault Diagnosis. International Journal of Advanced Manufacturing Technology, 2001, 17, 769-774.	3.0	22
136	A Prototype Knowledge-Based System for Conceptual Synthesis of the Design Process. International Journal of Advanced Manufacturing Technology, 2001, 17, 549-557.	3.0	12
137	EFDEX: A Knowledge-Based Expert System for Functional Design of Engineering Systems. Engineering With Computers, 2001, 17, 339-353.	6.1	34
138	Processing of HA-coated Ti–6Al–4V by a ceramic slurry approach: an in vitro study. Biomaterials, 2001, 22, 1225-1232.	11.4	33
139	Mechanical alloying of TiC/M2 high speed steel composite powders and sintering investigation. Materials Science & Diplication A: Structural Materials: Properties, Microstructure and Processing, 2001, 311, 13-21.	5.6	39
140	Sintering study of 316L stainless steel metal injection molding parts using Taguchi method: final density. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 311, 74-82.	5.6	87
141	Production of metal matrix composite part by powder injection molding. Journal of Materials Processing Technology, 2001, 108, 398-407.	6.3	102
142	Production of micro components by micro powder injection molding. Journal of Materials Science Letters, 2001, 20, 307-309.	0.5	15
143	Effects of debinding parameters on powder injection molded Ti-6Al-4V/HA composite parts. Advanced Powder Technology, 2001, 12, 361-370.	4.1	38
144	Sintering activation energy of powder injection molded 316L stainless steel. Scripta Materialia, 2001, 44, 1131-1137.	5.2	33

#	Article	IF	Citations
145	Modelling functional design information for injection mould design. International Journal of Production Research, 2001, 39, 2501-2515.	7. 5	7
146	Constraint-based functional design verification for conceptual design. CAD Computer Aided Design, 2000, 32, 889-899.	2.7	62
147	A two-stage collapsible core for injection moulded plastic parts with internal undercuts. International Journal of Machine Tools and Manufacture, 2000, 40, 1215-1233.	13.4	2
148	Microstructure evolution during sintering of injection molded M2 high speed steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 293, 46-55.	5.6	49
149	Abstracting and Exploring Functional Design Information for Conceptual Mechanical Product Design. Engineering With Computers, 2000, 16, 36-52.	6.1	62
150	Design automation of two-stage collapsible core using design prototype. International Journal of Computer Integrated Manufacturing, 2000, 13, 31-39.	4.6	4
151	A dual-stage functional modelling framework with multi-level design knowledge for conceptual mechanical design. Journal of Engineering Design, 2000, 11, 347-375.	2.3	27
152	Sintering of injection molded M2 high-speed steel. Materials Letters, 2000, 45, 32-38.	2.6	45
153	Mixing and characterization of feedstock for powder injection molding. Materials Letters, 2000, 46, 109-114.	2.6	102
154	A Rough-Set-Based Approach for Classification and Rule Induction. International Journal of Advanced Manufacturing Technology, 1999, 15, 438-444.	3.0	75
155	A parametric study of the shock characteristics of expandable polystyrene foam protective packaging. Polymer Engineering and Science, 1998, 38, 558-565.	3.1	6
156	A design perspective of mechanical function and its object-oriented representation scheme. Engineering With Computers, 1998, 14, 309-320.	6.1	25
157	The Effects of Gate Size in Powder Injection Molding. Materials and Manufacturing Processes, 1997, 12, 629-640.	4.7	2
158	Mathematical modelling and simulation of pop-up books. Computers and Graphics, 1996, 20, 21-31.	2.5	27
159	Automated process planning for plastic injection and blow moulds. Journal of Materials Processing Technology, 1996, 58, 390-395.	6.3	3
160	An industrial implementation of computer-aided tolerance charting. International Journal of Advanced Manufacturing Technology, 1996, 12, 122-131.	3.0	17
161	Intersection algorithms for lines and circles. ACM Transactions on Graphics, 1988, 8, 25-40.	7.2	14
162	Convex Decomposition of Simple Polygons. ACM Transactions on Graphics, 1984, 3, 244-265.	7.2	65

ARTICLE IF CITATIONS

Anisotropic Mechanical Properties in a Big-Sized Ti-6Al-4V Plate Fabricated by Electron Beam Melting.,
0, , 1-12.