Matthew A Nystoriak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1855330/publications.pdf

Version: 2024-02-01

31	1,279	17	28
papers	citations	h-index	g-index
33	33	33	1744
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Collagen type XIX regulates cardiac extracellular matrix structure and ventricular function. Matrix Biology, 2022, 109, 49-69.	1.5	6
2	Pyridine nucleotide redox potential in coronary smooth muscle couples myocardial blood flow to cardiac metabolism. Nature Communications, 2022, 13, 2051.	5.8	5
3	Myocardial Blood Flow Control by Oxygen Sensing Vascular $\mathrm{Kv}\hat{l}^2$ Proteins. Circulation Research, 2021, 128, 738-751.	2.0	11
4	HNRNPA2B1 regulates tamoxifen- and fulvestrant-sensitivity and hallmarks of endocrine resistance in breast cancer cells. Cancer Letters, 2021, 518, 152-168.	3.2	28
5	Coronary microvascular disease during metabolic syndrome: What is known and unknown. International Journal of Cardiology, 2020, 321, 18-19.	0.8	1
6	The Enzymatic Function of K V \hat{I}^22 Contributes to Resistance Artery Vasodilation. FASEB Journal, 2020, 34, 1-1.	0.2	0
7	Metabolic regulation of Kv channels and cardiac repolarization by $\text{Kv}\hat{l}^22$ subunits. Journal of Molecular and Cellular Cardiology, 2019, 137, 93-106.	0.9	21
8	Comparative effects of parent and heated cinnamaldehyde on the function of human iPSC-derived cardiac myocytes. Toxicology in Vitro, 2019, 61, 104648.	1.1	11
9	Biochemical and physiological properties of K+ channel-associated AKR6A (Kvβ) proteins. Chemico-Biological Interactions, 2019, 305, 21-27.	1.7	5
10	TRPA1 channel contributes to myocardial ischemia-reperfusion injury. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H889-H899.	1.5	42
11	Adenylyl cyclase 5–generated cAMP controls cerebral vascular reactivity during diabetic hyperglycemia. Journal of Clinical Investigation, 2019, 129, 3140-3152.	3.9	35
12	A Gs-coupled purinergic receptor boosts Ca2+ influx and vascular contractility during diabetic hyperglycemia. ELife, 2019, 8, .	2.8	33
13	Regulation of voltageâ€gated potassium channels in vascular smooth muscle during hypertension and metabolic disorders. Microcirculation, 2018, 25, e12423.	1.0	50
14	Regulation of microvascular function by voltageâ€gated potassium channels: New tricks for an "ancient―dog. Microcirculation, 2018, 25, e12435.	1.0	7
15	Coronary microvascular Kv1 channels as regulatory sensors of intracellular pyridine nucleotide redox potential. Microcirculation, 2018, 25, e12426.	1.0	19
16	Cardiovascular Effects and Benefits of Exercise. Frontiers in Cardiovascular Medicine, 2018, 5, 135.	1.1	386
17	Local regulation of Lâ€type Ca _V 1.2 channel and vascular reactivity by adenylyl cyclase 5 during diabetic hyperglycemia. FASEB Journal, 2018, 32, 567.1.	0.2	0
18	Ser ¹⁹²⁸ phosphorylation by PKA stimulates the L-type Ca ²⁺ channel Ca _V 1.2 and vasoconstriction during acute hyperglycemia and diabetes. Science Signaling, 2017, 10, .	1.6	85

#	Article	IF	CITATIONS
19	Elevating CXCR7 Improves Angiogenic Function of EPCs via Akt/GSK-3β/Fyn-Mediated Nrf2 Activation in Diabetic Limb Ischemia. Circulation Research, 2017, 120, e7-e23.	2.0	114
20	Predominant contribution of L-type Cav1.2 channel stimulation to impaired intracellular calcium and cerebral artery vasoconstriction in diabetic hyperglycemia. Channels, 2017, 11, 340-346.	1.5	16
21	Phosphorylation of Ser $<$ sup $>$ 1928 $<$ /sup $>$ mediates the enhanced activity of the L-type Ca $<$ sup $>$ 2+ $<$ /sup $>$ channel Ca $<$ sub $>$ v $<$ /sub $>$ 1.2 by the \hat{I}^2 $<$ sub $>$ 2 $<$ /sub $>$ -adrenergic receptor in neurons. Science Signaling, 2017, 10, .	1.6	91
22	Heteromeric complexes of aldo-keto reductase auxiliary K V \hat{l}^2 subunits (AKR6A) regulate sarcolemmal localization of K V 1.5 in coronary arterial myocytes. Chemico-Biological Interactions, 2017, 276, 210-217.	1.7	15
23	Impaired BKCa channel function in native vascular smooth muscle from humans with type 2 diabetes. Scientific Reports, 2017, 7, 14058.	1.6	31
24	Selective Down-regulation of KV2.1 Function Contributes to Enhanced Arterial Tone during Diabetes. Journal of Biological Chemistry, 2015, 290, 7918-7929.	1.6	30
25	AKAP150 Contributes to Enhanced Vascular Tone by Facilitating Large-Conductance Ca ²⁺ -Activated K ⁺ Channel Remodeling in Hyperglycemia and Diabetes Mellitus. Circulation Research, 2014, 114, 607-615.	2.0	86
26	Capturing single L-type Ca2+ channel function with optics. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 1657-1664.	1.9	11
27	AKAP150 is required for NFATc3â€induced vascular BKCa channel suppression during diabetic hypertension. FASEB Journal, 2012, 26, 872.26.	0.2	0
28	Reduced Ca ²⁺ Spark Activity after Subarachnoid Hemorrhage Disables BK Channel Control of Cerebral Artery Tone. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 3-16.	2.4	40
29	Fundamental increase in pressure-dependent constriction of brain parenchymal arterioles from subarachnoid hemorrhage model rats due to membrane depolarization. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H803-H812.	1.5	71
30	Kv Channel Suppression and Enhanced Cav Channel Activity Contribute to Increased Constriction of Parenchymal Arterioles from Subarachnoid Hemorrhage Model Rats. Biophysical Journal, 2010, 98, 101a-102a.	0.2	0
31	Cav1.2 splice variant with exon 9* is critical for regulation of cerebral artery diameter. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H1820-H1828.	1.5	24