
Matthew A Nystoriak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1855330/publications.pdf Version: 2024-02-01

MATTHEW A NYSTOPIAK

#	Article	IF	CITATIONS
1	Cardiovascular Effects and Benefits of Exercise. Frontiers in Cardiovascular Medicine, 2018, 5, 135.	1.1	386
2	Elevating CXCR7 Improves Angiogenic Function of EPCs via Akt/GSK-3β/Fyn-Mediated Nrf2 Activation in Diabetic Limb Ischemia. Circulation Research, 2017, 120, e7-e23.	2.0	114
3	Phosphorylation of Ser ¹⁹²⁸ mediates the enhanced activity of the L-type Ca ²⁺ channel Ca _v 1.2 by the l² ₂ -adrenergic receptor in neurons. Science Signaling, 2017, 10, .	1.6	91
4	AKAP150 Contributes to Enhanced Vascular Tone by Facilitating Large-Conductance Ca ²⁺ -Activated K ⁺ Channel Remodeling in Hyperglycemia and Diabetes Mellitus. Circulation Research, 2014, 114, 607-615.	2.0	86
5	Ser ¹⁹²⁸ phosphorylation by PKA stimulates the L-type Ca ²⁺ channel Ca _V 1.2 and vasoconstriction during acute hyperglycemia and diabetes. Science Signaling, 2017, 10, .	1.6	85
6	Fundamental increase in pressure-dependent constriction of brain parenchymal arterioles from subarachnoid hemorrhage model rats due to membrane depolarization. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H803-H812.	1.5	71
7	Regulation of voltageâ€gated potassium channels in vascular smooth muscle during hypertension and metabolic disorders. Microcirculation, 2018, 25, e12423.	1.0	50
8	TRPA1 channel contributes to myocardial ischemia-reperfusion injury. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H889-H899.	1.5	42
9	Reduced Ca ²⁺ Spark Activity after Subarachnoid Hemorrhage Disables BK Channel Control of Cerebral Artery Tone. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 3-16.	2.4	40
10	Adenylyl cyclase 5–generated cAMP controls cerebral vascular reactivity during diabetic hyperglycemia. Journal of Clinical Investigation, 2019, 129, 3140-3152.	3.9	35
11	A Gs-coupled purinergic receptor boosts Ca2+ influx and vascular contractility during diabetic hyperglycemia. ELife, 2019, 8, .	2.8	33
12	Impaired BKCa channel function in native vascular smooth muscle from humans with type 2 diabetes. Scientific Reports, 2017, 7, 14058.	1.6	31
13	Selective Down-regulation of KV2.1 Function Contributes to Enhanced Arterial Tone during Diabetes. Journal of Biological Chemistry, 2015, 290, 7918-7929.	1.6	30
14	HNRNPA2B1 regulates tamoxifen- and fulvestrant-sensitivity and hallmarks of endocrine resistance in breast cancer cells. Cancer Letters, 2021, 518, 152-168.	3.2	28
15	Cav1.2 splice variant with exon 9* is critical for regulation of cerebral artery diameter. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H1820-H1828.	1.5	24
16	Metabolic regulation of Kv channels and cardiac repolarization by Kvβ2 subunits. Journal of Molecular and Cellular Cardiology, 2019, 137, 93-106.	0.9	21
17	Coronary microvascular Kv1 channels as regulatory sensors of intracellular pyridine nucleotide redox potential. Microcirculation, 2018, 25, e12426.	1.0	19
18	Predominant contribution of L-type Cav1.2 channel stimulation to impaired intracellular calcium and cerebral artery vasoconstriction in diabetic hyperglycemia. Channels, 2017, 11, 340-346.	1.5	16

MATTHEW A NYSTORIAK

#	Article	IF	CITATIONS
19	Heteromeric complexes of aldo-keto reductase auxiliary K V β subunits (AKR6A) regulate sarcolemmal localization of K V 1.5 in coronary arterial myocytes. Chemico-Biological Interactions, 2017, 276, 210-217.	1.7	15
20	Capturing single L-type Ca2+ channel function with optics. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 1657-1664.	1.9	11
21	Comparative effects of parent and heated cinnamaldehyde on the function of human iPSC-derived cardiac myocytes. Toxicology in Vitro, 2019, 61, 104648.	1.1	11
22	Myocardial Blood Flow Control by Oxygen Sensing Vascular Kvβ Proteins. Circulation Research, 2021, 128, 738-751.	2.0	11
23	Regulation of microvascular function by voltageâ€gated potassium channels: New tricks for an "ancient―dog. Microcirculation, 2018, 25, e12435.	1.0	7
24	Collagen type XIX regulates cardiac extracellular matrix structure and ventricular function. Matrix Biology, 2022, 109, 49-69.	1.5	6
25	Biochemical and physiological properties of K+ channel-associated AKR6A (Kvl²) proteins. Chemico-Biological Interactions, 2019, 305, 21-27.	1.7	5
26	Pyridine nucleotide redox potential in coronary smooth muscle couples myocardial blood flow to cardiac metabolism. Nature Communications, 2022, 13, 2051.	5.8	5
27	Coronary microvascular disease during metabolic syndrome: What is known and unknown. International Journal of Cardiology, 2020, 321, 18-19.	0.8	1
28	Kv Channel Suppression and Enhanced Cav Channel Activity Contribute to Increased Constriction of Parenchymal Arterioles from Subarachnoid Hemorrhage Model Rats. Biophysical Journal, 2010, 98, 101a-102a.	0.2	0
29	AKAP150 is required for NFATc3â€induced vascular BKCa channel suppression during diabetic hypertension. FASEB Journal, 2012, 26, 872.26.	0.2	0
30	Local regulation of Lâ€ŧype Ca _V 1.2 channel and vascular reactivity by adenylyl cyclase 5 during diabetic hyperglycemia. FASEB Journal, 2018, 32, 567.1.	0.2	0
31	The Enzymatic Function of K V \hat{I}^22 Contributes to Resistance Artery Vasodilation. FASEB Journal, 2020, 34, 1-1.	0.2	0