Khairy Sayed

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1855047/publications.pdf

Version: 2024-02-01

		567281	677142
84	780	15	22
papers	citations	h-index	g-index
90	90	90	584
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	New High Voltage Gain Dual-boost DC-DC Converter for Photovoltaic Power Systems. Electric Power Components and Systems, 2012, 40, 711-728.	1.8	50
2	Electric Vehicle to Power Grid Integration Using Three-Phase Three-Level AC/DC Converter and PI-Fuzzy Controller. Energies, 2016, 9, 532.	3.1	48
3	Optimum Resilient Operation and Control DC Microgrid Based Electric Vehicles Charging Station Powered by Renewable Energy Sources. Energies, 2019, 12, 4240.	3.1	40
4	Dynamic Modeling of Wind Turbines Based on Estimated Wind Speed under Turbulent Conditions. Energies, 2019, 12, 1907.	3.1	32
5	Novel Soft-Switching Integrated Boost DC-DC Converter for PV Power System. Energies, 2020, 13, 749.	3.1	27
6	Multi-Port PWM DC-DC Power Converter for Renewable Energy Applications. Energies, 2021, 14, 3490.	3.1	26
7	Design of State Feedback Current Controller for Fast Synchronization of DFIG in Wind Power Generation Systems. Energies, 2019, 12, 2427.	3.1	25
8	A Review of DC-AC Converters for Electric Vehicle Applications. Energies, 2022, 15, 1241.	3.1	24
9	Sensorless Active and Reactive Control for DFIG Wind Turbines Using Opposition-Based Learning Technique. Sustainability, 2020, 12, 3583.	3.2	23
10	Artificial Neural Network Based Fault Classification and Location for Transmission Lines., 2019,,.		21
11	A solar-wind hybrid power system for irrigation in Toshka area. , 2011, , .		19
12	Zeroâ€voltage softâ€switching DC–DC converterâ€based charger for LV battery in hybrid electric vehicles. IET Power Electronics, 2019, 12, 3389-3396.	2.1	19
13	Energy-Saving of Battery Electric Vehicle Powertrain and Efficiency Improvement during Different Standard Driving Cycles. Sustainability, 2020, 12, 10466.	3.2	19
14	Power Management Strategy for Battery Electric Vehicles. IET Electrical Systems in Transportation, 2019, 9, 65-74.	2.4	18
15	MPPT for a PV Grid-Connected System to Improve Efficiency under Partial Shading Conditions. Sustainability, 2020, 12, 10310.	3.2	18
16	Design and implementation of a multifunction DSP-based-numerical relay. Electric Power Systems Research, 2017, 143, 32-43.	3.6	17
17	Dynamic performance of wind turbine conversion system using PMSG-based wind simulator. Electrical Engineering, 2017, 99, 431-439.	2.0	16
18	Boost-Half Bridge Single Power Stage PWM DC-DC Converter for Small Scale Fuel Cell Stack. , 2006, , .		15

#	Article	IF	Citations
19	Three-level phase-shift ZVS-PWM DC-DC converter with high frequency transformer for high performance arc welding machines. , 2010 , , .		15
20	Phase-Shift PWM-Controlled DC–DC Converter with Secondary-Side Current Doubler Rectifier for On-Board Charger Application. Energies, 2020, 13, 2298.	3.1	15
21	Control and analysis of bidirectional interleaved hybrid converter with coupled inductors for electric vehicle applications. Electrical Engineering, 2020, 102, 195-222.	2.0	14
22	Power optimisation scheme of induction motor using FLC for electric vehicle. IET Electrical Systems in Transportation, 2020, 10, 301-309.	2.4	14
23	Design of Microgrid with Flywheel Energy Storage System Using HOMER Software for Case Study. , 2019, , .		13
24	Artificial neural networks applied on induction motor drive for an electric vehicle propulsion system. Electrical Engineering, 2022, 104, 1769-1780.	2.0	13
25	Current source ZCS PFM DC-DC converter for magnetron power supply. , 2008, , .		12
26	Sensorless control for <scp>PMSM</scp> using model reference adaptive system. International Transactions on Electrical Energy Systems, 2021, 31, e12733.	1.9	12
27	New high-frequency linked half-bridge soft-switching PWM DC–DC converter with input DC rail side active edge resonant snubbers. IET Power Electronics, 2010, 3, 774.	2.1	10
28	Analysis and design for interleaved ZCS buck DC-DC converter with low switching losses. International Journal of Power Electronics, 2017, 8, 210.	0.2	10
29	Hybrid control of a multiâ€area multiâ€machine power system with FACTS devices using nonâ€linear modelling. IET Generation, Transmission and Distribution, 2020, 14, 1993-2003.	2.5	9
30	A New Single-Phase Direct Frequency Controller Having Reduced Switching Count without Zero-Crossing Detector for Induction Heating System. Electronics (Switzerland), 2020, 9, 430.	3.1	9
31	A Divided Voltage Half-Bridge High Frequency Soft-Switching PWM DC-DC Converter with High and Low Side DC Rail Active Edge Resonant Snubbers. , 2006, , .		8
32	Three-Level Phase Shifted soft transition PWM DCDC power converter with high frequency link for arc welders and its extended version. , 2009, , .		8
33	DC-DC converter with three-phase power factor correction for arc welder. , 2011, , .		8
34	A ripple current minimisation based single phase PWM inverter. International Journal of Power Electronics, 2014, 6, 201.	0.2	8
35	Performance enhancement of a humidification–dehumidification desalination system. Journal of Thermal Analysis and Calorimetry, 2020, 140, 309-319.	3.6	8
36	Supervisory control of a resilient DC microgrid for commercial buildings. International Journal of Process Systems Engineering, 2017, 4, 99.	0.2	8

#	Article	IF	CITATIONS
37	Design and implementation of stand-alone residential PV system. , 2011, , .		7
38	Design, implementation and operation of a stand-alone residential photovoltaic system. International Journal of Power and Energy Conversion, 2017, 8, 47.	0.3	7
39	A high-efficiency DC-DC converter with LC resonant in the load-side of HFT and voltage doubler for solar PV systems. International Journal of Power Electronics, 2017, 8, 232.	0.2	6
40	Electro-Thermal Modeling of Solar Photovoltaic Arrays. , 2011, , .		5
41	Analysis of protection system for a microgrid supplying irrigation load in Toshka Area. , 2012, , .		5
42	New DC rail side soft-switching PWM DC-DC converter with voltage doubler rectifier for PV generation interface. , 2014, , .		5
43	Performance of Induction Heating Power Supply Using Dual Control Mode Pulse-width Modulation–Pulse-density Modulation High-frequency Inverter. Electric Power Components and Systems, 2015, 43, 157-166.	1.8	5
44	A new circuit topology for battery charger from 200V DC source to $12V$ for hybrid automotive applications. , 2016 , , .		5
45	Energy Management and Control Strategy of DC Microgrid Including Multiple Energy Storage Systems. , 2019, , .		5
46	Development of competencyâ€based training system in Assiutâ€ITEC: A case study. The Journal of Competency-Based Education, 2020, 5, e01217.	1.0	5
47	PWM/PDM Dual Mode Controlled Soft Switching Multi Resonant High-Frequency Inverter. , 0, , .		4
48	Analysis of overcurrent numerical-relays for protection of a stand-alone PV system. , 2014, , .		4
49	Wind Power Plants Control Systems Based on SCADA System. Green Energy and Technology, 2021, , 109-151.	0.6	4
50	A New High Frequency Linked Soft-Switching PWM DC-DC Converter with High and Low Side DC Rail Active Edge Resonant Snubbers for High Performance Arc Welder. Conference Record - IAS Annual Meeting (IEEE Industry Applications Society), 2006, , .	0.0	3
51	A New Soft-Switching PWM Half-Bridge DC-DC Converter with High and Low Side DC Rail Active Edge Resonant Snubbers. , 0, , .		3
52	A Novel Soft-Switching PWM Full-Bridge DC/DC Converter with DC Busline Series Switch-Parallel Capacitor Edge Resonant Snubber Assisted by High-Frequency Transformer Leakage Inductor., 2006,,.		3
53	An Asymmetrical Switched Capacitor and Lossless Inductor Quasi-Resonant Snubber-Assisted ZCS-PWM DC-DC Converter with High frequency Link. , 2006, , .		3
54	Steady-state modeling and control of a microgrid supplying irrigation load in Toshka Area. , 2012, , .		3

#	Article	IF	CITATIONS
55	Smart distribution system Volt/VAR control using the intelligence of smart transformer. , 2016, , .		3
56	A Novel Soft-Switching PWM Full-Bridge DC/DC Converter with DC Busline Series Switch-Parallel Capacitor Edge Resonant Snubber Assisted by High-Frequency Transformer Leakage Inductor., 2006,,.		3
57	A novel soft-switching PWM DC/DC converter with DC rail series switch-parallel capacitor edge resonant snubber assisted by high-frequency transformer components. , 2006, , .		3
58	An integral square error-based model predictive controller for two area load frequency control. Advances in Energy Research, 2017, 5, 79-90.	0.4	3
59	32 V-300 A/60 kHz edge resonant soft-switching PWM DC/DC converter with DC rail series switch-parallel capacitor snubber assisted by high-frequency transformer parasitic components., 2005,,.		2
60	Modeling and Simulation of PV Arrays. , 2010, , .		2
61	Numerical Simulation of Thin-Film Photovoltaic Solar Cells. , 2011, , .		2
62	New DC rail side soft-switching PWM DC-DC converter with current doubler rectifier. , 2011, , .		2
63	New dc rail side soft-switching PWM dc-dc converter with high frequency planar transformer. , 2011, , .		2
64	On the design and operation of a standalone residential PV system in Egypt. , 2013, , .		2
65	Current doubler rectifier for arc welding machines with a phase-shift ZVS three-level DC-DC converter. , 2017, , .		2
66	A Utility AC 400V Grid-Connected DC Rail Side Active Edge Resonant ZVS-PWM DC-DC Converter using High-Frequency Transformer Parasitic Components., 2007,,.		1
67	A high-frequency linked three-level phase-shift ZVS-PWM DC-DC converter for distributed DC power feeder., 2009,,.		1
68	Control of EV charging station based on three-phase three-level AC/DC rectifier. , 2015, , .		1
69	Energy Efficient Control Scheme of Induction Motor Based EV. , 2019, , .		1
70	SENSORLESS VECTOR CONTROLLED THREE-PHASE PWM INVERTER-FED INDUCTION MOTOR DRIVE SYSTEM WITH AUTO-TUNING ESTIMATION OF MACHINE PARAMETER APPROACH. Sohag Engineering Journal, 2021, 1, 34-48.	0.2	1
71	An extensive model for implementing competencyâ€based training in technical and vocational education and training teacher training system for Assiutâ€Integrated Technical Education Cluster, Egypt. The Journal of Competency-Based Education, 2021, 6, e01245.	1.0	1
72	Supervisory control of a resilient DC microgrid for commercial buildings. International Journal of Process Systems Engineering, 2017, 4, 99.	0.2	1

#	Article	IF	CITATIONS
73	A high-efficiency DC-DC converter with LC resonant in the load-side of HFT and voltage doubler for solar PV systems. International Journal of Power Electronics, 2017, 8, 232.	0.2	1
74	Dual Duty Cycle Controlled Voltage Source Soft-Switching High Frequency Inverter with AC Load Side Reverse Blocking Switched Resonant Capacitor., 2006,,.		0
75	A Switched-Capacitor Lossless Inductor ZCS Snubber-Assisted Series Load Resonant High Frequency Inverter with Dual Mode Pulse Modulation Scheme. , 2006, , .		O
76	Operation Analysis of a Novel High Frequency-Link Asymmetrical Half-Bridge ZCS-PWM DC-DC Converter., 2007,,.		0
77	Interleaved ZCS boost DC-DC converters with coupled inductor using active edge resonant switch blocks for PV interface. , 2009, , .		0
78	Aggregation of microgrids for irrigation in Toshka area. , 2013, , .		0
79	Different Approaches for Efficiency Optimization of DFIG Wind Power Generation Systems. Green Energy and Technology, 2021, , 35-56.	0.6	0
80	Design, implementation and operation of a stand-alone residential photovoltaic system. International Journal of Power and Energy Conversion, 2017, 8, 47.	0.3	0
81	Analysis and design for interleaved ZCS buck DC-DC converter with low switching losses. International Journal of Power Electronics, 2017, 8, 210.	0.2	O
82	A new soft switching PV module-integrated boost DC-DC converter. International Journal of Power Electronics, 2020, 12, 445.	0.2	0
83	A new soft switching PV module-integrated boost DC-DC converter. International Journal of Power Electronics, 2020, 12, 445.	0.2	O
84	Monitoring and Rationalizing Energy Consumption of Home Electric Appliances. International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering, 2020, 8, 1-14.	0.2	0