Uyime Donatus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1854957/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparing the corrosion behaviour of AA2050 and AA7050 aluminium alloys by scanning vibrating electrode and scanning ion-selective electrode techniques. Corrosion Engineering Science and Technology, 2022, 57, 85-96.	1.4	1
2	Corrosion behaviour of the 2098-T351 Al–Cu–Li alloy after different surface treatments. Corrosion Engineering Science and Technology, 2022, 57, 269-279.	1.4	1
3	TSA anodising voltage effects on the near-surface coarse intermetallic particles in the AA2024-T3 and AA2198-T8 alloys. Corrosion Engineering Science and Technology, 2022, 57, 380-396.	1.4	6
4	Corrosion protection of the AA2198â€T8 alloy by environmentally friendly organicâ€inorganic solâ€gel coating based on bisâ€1,2â€(triethoxysilyl) ethane. Surface and Interface Analysis, 2021, 53, 314-329.	1.8	2
5	Influence of chloride ions concentration on the development of severe localised corrosion and its effects on the electrochemical response of the 2198-T8 alloy. Corrosion Engineering Science and Technology, 2021, 56, 341-350.	1.4	5
6	How microstructure affects localized corrosion resistance of stir zone of the AA2198-T8 alloy after friction stir welding. Materials Characterization, 2021, 174, 111025.	4.4	12
7	Passive film composition and stability of CoCrFeNi and CoCrFeNiAl high entropy alloys in chloride solution. Materials Chemistry and Physics, 2021, 267, 124582.	4.0	18
8	The Effect of Acid Pickling on the Corrosion Behavior of a Cerium Conversion-Coated AA2198-T851 Al-Cu-Li Alloy. Journal of Materials Engineering and Performance, 2020, 29, 167-174.	2.5	3
9	Electronic properties of the passive films formed on CoCrFeNi and CoCrFeNiAl high entropy alloys in sodium chloride solution. Journal of Materials Research and Technology, 2020, 9, 13879-13892.	5.8	53
10	Galvanic coupling effects on the corrosion behavior of the 6061 aluminum alloy used in research nuclear reactors. Journal of Nuclear Materials, 2020, 541, 152440.	2.7	12
11	Effects of Picture Frame Technique (PFT) on the corrosion behavior of 6061 aluminum alloy. Journal of Nuclear Materials, 2020, 539, 152320.	2.7	6
12	Galvanic and asymmetry effects on the local electrochemical behavior of the 2098-T351 alloy welded by friction stir welding. Journal of Materials Science and Technology, 2020, 45, 162-175.	10.7	20
13	Microstructural, Electrochemical and Localized Corrosion Characterization of the AA2198-T851 Alloy. Materials Research, 2020, 23, .	1.3	8
14	The local electrochemical behavior of the AA2098â€₹351 and surface preparation effects investigated by scanning electrochemical microscopy. Surface and Interface Analysis, 2019, 51, 982-992.	1.8	12
15	Thermomechanical treatment and corrosion resistance correlation in the AA2198 Al–Cu–Li alloy. Corrosion Engineering Science and Technology, 2019, 54, 575-586.	1.4	28
16	Exfoliation corrosion susceptibility in the zones of friction stir welded AA2098-T351. Journal of Materials Research and Technology, 2019, 8, 5916-5929.	5.8	15
17	Macro and microgalvanic interactions in friction stir weldment of AA2198-T851 alloy. Journal of Materials Research and Technology, 2019, 8, 6209-6222.	5.8	16
18	Correlating the Modes of Corrosion with Microstructure in the Friction Stir Welded AA2198-T8 Alloy in Aqueous Hydrogen Peroxide-Chloride Medium. Corrosion, 2019, 75, 628-640.	1.1	17

UYIME DONATUS

#	Article	IF	CITATIONS
19	Effect of unequal levels of deformation and fragmentation on the electrochemical response of friction stir welded AA2024-T3 alloy. Electrochimica Acta, 2019, 313, 271-281.	5.2	26
20	<scp>EIS</scp> investigation of a <scp>C</scp> eâ€based posttreatment step on the corrosion behaviour of Alclad <scp>AA2024</scp> anodized in <scp>TSA</scp> . Surface and Interface Analysis, 2019, 51, 1260-1275.	1.8	11
21	Comparison of the corrosion resistance of an Al–Cu alloy and an Al–Cu–Li alloy. Corrosion Engineering Science and Technology, 2019, 54, 402-412.	1.4	20
22	Effect of surface treatments on the localized corrosion resistance of the AA2198â€₹8 aluminum lithium alloy welded by FSW process. Surface and Interface Analysis, 2019, 51, 1231-1239.	1.8	7
23	The effect of manufacturing process induced near-surface deformed layer on the corrosion behaviour of AA2198-T851 Al–Cu–Li alloy. Corrosion Engineering Science and Technology, 2019, 54, 205-215.	1.4	14
24	The effect of surface pretreatment on the corrosion behaviour of silanated AA2198â€T851 Alâ€Cuâ€Li alloy. Surface and Interface Analysis, 2019, 51, 275-289.	1.8	6
25	On the microstructure characterization of the AA2098-T351 alloy welded by FSW. Materials Characterization, 2018, 140, 233-246.	4.4	59
26	On the severe localized corrosion susceptibility of the AA2198-T851 alloy. Corrosion Science, 2018, 133, 132-140.	6.6	68
27	On the AA2198-T851 alloy microstructure and its correlation with localized corrosion behaviour. Corrosion Science, 2018, 131, 300-309.	6.6	83
28	Variations in stir zone and thermomechanically affected zone of dissimilar friction stir weld of AA5083 and AA6082 alloys. Transactions of Nonferrous Metals Society of China, 2018, 28, 2410-2418.	4.2	17
29	Qualitative use of potentiodynamic polarization and anodic hydrogen evolution in the assessment of corrosion susceptibility in AA2198â€ī851 Al–Cu–Li alloy. Materials and Corrosion - Werkstoffe Und Korrosion, 2018, 69, 1375-1388.	1.5	11
30	Correlation between corrosion resistance, anodic hydrogen evolution and microhardness in friction stir weldment of AA2198 alloy. Materials Characterization, 2018, 144, 99-112.	4.4	26
31	Corrosion and anodizing behaviour of friction stir weldment of AA2198-T851 Al-Cu-Li alloy. Materials Chemistry and Physics, 2018, 219, 493-511.	4.0	12
32	Corrosion pathways in aluminium alloys. Transactions of Nonferrous Metals Society of China, 2017, 27, 55-62.	4.2	51
33	Grain distinct stratified nanolayers in aluminium alloys. Materials Chemistry and Physics, 2017, 188, 109-114.	4.0	8
34	Areas of concern in an anodised dissimilar friction stir weld of AA5083 and AA6082 aluminium alloys. Transactions of the Institute of Metal Finishing, 2016, 94, 70-75.	1.3	5
35	Galvanostatic response of AA2024 aluminium alloy in 3.5% NaCl solution. Bulletin of Materials Science, 2016, 39, 1537-1540.	1.7	0
36	Effect of prior sputter deposition of pure aluminium on the corrosion behaviour of anodized friction stir weld of dissimilar aluminium alloys. Scripta Materialia, 2016, 123, 126-129.	5.2	8

UYIME DONATUS

#	Article	IF	CITATIONS
37	Analyses of the Sequential Stages of Corrosion on AA2024T3 Using the Scanning Vibrating Electrode Technique (SVET). Journal of Materials Engineering and Performance, 2015, 24, 3808-3814.	2.5	3
38	Features in aluminium alloy grains and their effects on anodizing and corrosion. Surface and Coatings Technology, 2015, 277, 91-98.	4.8	20
39	Chemical etching behaviour of titanium in bromine-methanol electrolyte. Materials Chemistry and Physics, 2015, 160, 329-336.	4.0	8
40	Understanding the galvanic interactions between AA2024T3 and mild steel using the scanning vibrating electrode technique. Materials Chemistry and Physics, 2015, 161, 228-236.	4.0	4
41	Corrosion susceptibility of dissimilar friction stir welds of AA5083 and AA6082 alloys. Materials Characterization, 2015, 107, 85-97.	4.4	64
42	Flow patterns in friction stir welds of AA5083 and AA6082 alloys. Materials and Design, 2015, 83, 203-213.	7.0	56
43	Study of the Effect of Cadmium on the Bimetallic Corrosion Behavior of AA2024T3 and Mild Steel Couple. Journal of Materials Engineering and Performance, 2015, 24, 1897-1905.	2.5	2
44	Anodizing Behavior of Friction Stir Welded Dissimilar Aluminum Alloys. Journal of the Electrochemical Society, 2015, 162, C657-C665.	2.9	13
45	Characterization of anodic oxide film growth on Ti6Al4V in NaTESi electrolyte with associated adhesive bonding behaviour. Electrochimica Acta, 2015, 182, 482-492.	5.2	9
46	Effect of Near-Ambient Temperature Changes on the Galvanic Corrosion of an AA2024-T3 and Mild Steel Couple. Journal of the Electrochemical Society, 2015, 162, C42-C46.	2.9	13
47	Mechanical Properties and Microstructures of Locally Produced Aluminium-Bronze Alloy. Journal of Minerals and Materials Characterization and Engineering, 2012, 11, 1020-1026.	0.4	5
48	Corrosion Resistance of Precipitation-Hardened Al Alloys: A Comparison between New Generation Al-Cu-Li and Conventional Alloys. , 0, , .		4
49	A review on Corrosion of High Entropy Alloys: Exploring the Interplay Between Corrosion Properties, Alloy Composition, Passive Film Stability and Materials Selection. Materials Research, 0, 25, .	1.3	27