
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/185480/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Crucial Role of Stromal Interaction Molecule-Activated TRPC-ORAI Channels in Vascular Remodeling and Pulmonary Hypertension Induced by Intermittent Hypoxia. Frontiers in Physiology, 2022, 13, 841828.	1.3	3
2	Contribution of STIM-Activated TRPC-ORAI Channels in Pulmonary Hypertension Induced by Chronic Sustained and Intermittent Hypoxia. Current Vascular Pharmacology, 2022, 20, 272-283.	0.8	2
3	Carotid Body Inflammation: Role in Hypoxia and in the Anti-inflammatory Reflex. Physiology, 2022, 37, 128-140.	1.6	14
4	Carbamylated form of human erythropoietin normalizes cardiorespiratory disorders triggered by intermittent hypoxia mimicking sleep apnea syndrome. Journal of Hypertension, 2021, 39, 1125-1133.	0.3	4
5	Carotid body chemoreceptors: physiology, pathology, and implications for health and disease. Physiological Reviews, 2021, 101, 1177-1235.	13.1	85
6	The Action of 2-Aminoethyldiphenyl Borinate on the Pulmonary Arterial Hypertension and Remodeling of High-Altitude Hypoxemic Lambs. Frontiers in Physiology, 2021, 12, 765281.	1.3	1
7	Stimâ€activated TRPCâ€ORAI channels in pulmonary hypertension induced by chronic intermittent hypoxia. Pulmonary Circulation, 2020, 10, 13-22.	0.8	13
8	Potential Contribution of Carotid Body-Induced Sympathetic and Renin-Angiotensin System Overflow to Pulmonary Hypertension in Intermittent Hypoxia. Current Hypertension Reports, 2019, 21, 89.	1.5	17
9	Chronic hypoxia changes gene expression profile of primary rat carotid body cells: consequences on the expression of NOS isoforms and ET-1 receptors. Physiological Genomics, 2019, 51, 109-124.	1.0	6
10	Intermittent Hypoxia Induces Pulmonary Vascular Remodeling and Increases the Expression of STIMâ€activated TRPCâ€ORAI Channels in the Lung. FASEB Journal, 2019, 33, 845.7.	0.2	0
11	Enhanced Carotid Body Chemosensory Discharge is Essential for the Hypertension Induced by Chronic Intermittent Hypoxia. FASEB Journal, 2019, 33, 551.18.	0.2	0
12	Cardiovascular responses to isometric handgrip exercise in young patients with recurrent vasovagal syncope. Autonomic Neuroscience: Basic and Clinical, 2018, 212, 23-27.	1.4	4
13	Translating carotid body function into clinical medicine. Journal of Physiology, 2018, 596, 3067-3077.	1.3	48
14	Proinflammatory Cytokines in the Nucleus of the Solitary Tract of Hypertensive Rats Exposed to Chronic Intermittent Hypoxia. Advances in Experimental Medicine and Biology, 2018, 1071, 69-74.	0.8	7
15	Effects of vagotomy on cardiovascular and heart rate variability alterations following chronic normobaric hypoxia in adult rabbits. Biological Research, 2018, 51, 57.	1.5	3
16	Imbalance in Renal Vasoactive Enzymes Induced by Mild Hypoxia: Angiotensin-Converting Enzyme Increases While Neutral Endopeptidase Decreases. Frontiers in Physiology, 2018, 9, 1791.	1.3	6
17	Carotid Body Type-I Cells Under Chronic Sustained Hypoxia: Focus on Metabolism and Membrane Excitability. Frontiers in Physiology, 2018, 9, 1282.	1.3	5
18	Acute Effects of Systemic Erythropoietin Injections on Carotid Body Chemosensory Activity Following Hypoxic and Hypercapnic Stimulation. Advances in Experimental Medicine and Biology, 2018, 1071, 95-102.	0.8	5

#	Article	IF	CITATIONS
19	Topical Application of Connexin43 Hemichannel Blocker Reduces Carotid Body-Mediated Chemoreflex Drive in Rats. Advances in Experimental Medicine and Biology, 2018, 1071, 61-68.	0.8	1
20	Ventilatory and Autonomic Regulation in Sleep Apnea Syndrome: A Potential Protective Role for Erythropoietin?. Frontiers in Physiology, 2018, 9, 1440.	1.3	9
21	Carotid Body Ablation: a New Target to Address Central Autonomic Dysfunction. Current Hypertension Reports, 2018, 20, 53.	1.5	11
22	Nitration of MnSOD in the Carotid Body and Adrenal Gland Induced by Chronic Intermittent Hypoxia. Journal of Histochemistry and Cytochemistry, 2018, 66, 753-765.	1.3	4
23	Contribution of Oxidative Stress and Inflammation to the Neurogenic Hypertension Induced by Intermittent Hypoxia. Frontiers in Physiology, 2018, 9, 893.	1.3	24
24	Chronic Intermittent Hypoxia-Induced Vascular Dysfunction in Rats is Reverted by N-Acetylcysteine Supplementation and Arginase Inhibition. Frontiers in Physiology, 2018, 9, 901.	1.3	18
25	Role of Carotid Body in Intermittent Hypoxia-Related Hypertension. Current Hypertension Reports, 2017, 19, 38.	1.5	37
26	Intermittent Hypoxia-Induced Carotid Body Chemosensory Potentiation and Hypertension Are Critically Dependent on Peroxynitrite Formation. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-9.	1.9	22
27	Carotid Body Ablation Abrogates Hypertension and Autonomic Alterations Induced by Intermittent Hypoxia in Rats. Hypertension, 2016, 68, 436-445.	1.3	90
28	Carotid body chemoreceptors, sympathetic neural activation, and cardiometabolic disease. Biological Research, 2016, 49, 13.	1.5	78
29	Editorial: Carotid body: a new target for rescuing neural control of cardiorespiratory balance in disease. Frontiers in Physiology, 2015, 6, 181.	1.3	16
30	Inflammation and oxidative stress during intermittent hypoxia: the impact on chemoreception. Experimental Physiology, 2015, 100, 149-155.	0.9	43
31	Arginase–endothelial nitric oxide synthase imbalance contributes to endothelial dysfunction during chronic intermittent hypoxia. Journal of Hypertension, 2015, 33, 515-524.	0.3	25
32	Antioxidant and anti hyperglycemic role of wine grape powder in rats fed with a high fructose diet. Biological Research, 2015, 48, 53.	1.5	12
33	Crucial Role of the Carotid Body Chemoreceptors on the Development of High Arterial Blood Pressure During Chronic Intermittent Hypoxia. Advances in Experimental Medicine and Biology, 2015, 860, 255-260.	0.8	10
34	Carotid Body Ablation Reverses the Hypertension and Autonomic Changes Induced by Intermittent Hypoxia. FASEB Journal, 2015, 29, 1060.2.	0.2	0
35	Chronic Phenytoin Treatment Reduces Hypoxic Ventilatory Responses in Rats. FASEB Journal, 2015, 29, 1060.6.	0.2	0
36	Chronic hypoxia induces the activation of the Wnt/β-catenin signaling pathway and stimulates hippocampal neurogenesis in wild-type and APPswe-PS1ΔE9 transgenic mice in vivo. Frontiers in Cellular Neuroscience, 2014, 8, 17.	1.8	60

#	Article	IF	CITATIONS
37	Carotid body potentiation during chronic intermittent hypoxia: implication for hypertension. Frontiers in Physiology, 2014, 5, 434.	1.3	32
38	Functional studies of acetylcholine, ATP and cytokine release from the human carotid body: the new frontier for oxygen chemoreception physiology. Experimental Physiology, 2014, 99, 1027-1028.	0.9	2
39	Enhanced carotid body chemosensory activity and the cardiovascular alterations induced by intermittent hypoxia. Frontiers in Physiology, 2014, 5, 468.	1.3	44
40	Neurobehavioral and autonomic alterations in adults with obstructive sleep apnea. Sleep Medicine, 2014, 15, 1319-1323.	0.8	32
41	Ebselen prevents the carotid body chemosensory potentiation and reverses the hypertension induced by intermittent hypoxia (873.1). FASEB Journal, 2014, 28, 873.1.	0.2	2
42	Effect of insular cortex inactivation on autonomic and behavioral responses to acute hypoxia in conscious rats. Behavioural Brain Research, 2013, 253, 60-67.	1.2	26
43	Inhibition of rat carotid body glomus cells TASK-like channels by acute hypoxia is enhanced by chronic intermittent hypoxia. Respiratory Physiology and Neurobiology, 2013, 185, 600-607.	0.7	18
44	Intermittent hypoxia: endothelinâ€1 and hypoxic carotid body chemosensory potentiation. Experimental Physiology, 2013, 98, 1550-1551.	0.9	14
45	Selective contribution of inflammation and oxidative stress to the cardiorespiratory and carotid body alterations following intermittent hypoxia. FASEB Journal, 2013, 27, 721.1.	0.2	0
46	Changes in expression and activity of MnSOD and CuZnSOD in carotid body and adrenal medullary cells of rats exposed to chronic intermittent hypoxia FASEB Journal, 2013, 27, 1137.4.	0.2	0
47	Contribution of Inflammation on Carotid Body Chemosensory Potentiation Induced by Intermittent Hypoxia. Advances in Experimental Medicine and Biology, 2012, 758, 199-205.	0.8	22
48	Carotid body inflammation and cardiorespiratory alterations in intermittent hypoxia. European Respiratory Journal, 2012, 39, 1492-1500.	3.1	111
49	NO modulation of carotid body chemoreception in health and disease. Respiratory Physiology and Neurobiology, 2012, 184, 158-164.	0.7	31
50	Oxidative Stress in the Carotid Body: Implications for the Cardioventilatory Alterations Induced by Obstructive Sleep Apnea. , 2012, , .		3
51	Rabbit Ventilatory Responses to Peripheral Chemoexcitators: Effects of Chronic Hypoxia. Advances in Experimental Medicine and Biology, 2012, 758, 307-313.	0.8	3
52	Contribution of TASK-Like Potassium Channels to the Enhanced Rat Carotid Body Responsiveness to Hypoxia. Advances in Experimental Medicine and Biology, 2012, 758, 365-371.	0.8	4
53	VEGF upâ€regulation and vascular area enlargement induced by intermittent hypoxia in the rat carotid body is not secondary to oxidative stress. FASEB Journal, 2012, 26, 898.1.	0.2	0
54	Immunohistochemical expression and nitration of MnSOD in the adrenal gland and the carotid body of rats exposed to chronic intermittent hypoxia. FASEB Journal, 2012, 26, 897.6.	0.2	0

#	Article	IF	CITATIONS
55	Differential expression of pro-inflammatory cytokines, endothelin-1 and nitric oxide synthases in the rat carotid body exposed to intermittent hypoxia. Brain Research, 2011, 1395, 74-85.	1.1	74
56	Chronic intermittent hypoxia-induced vascular enlargement and VEGF upregulation in the rat carotid body is not prevented by antioxidant treatment. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2011, 301, L702-L711.	1.3	39
57	Comparative respiratory strategies of subterranean and fossorial octodontid rodents to cope with hypoxic and hypercapnic atmospheres. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2010, 180, 877-884.	0.7	22
58	Carotid body and cardiorespiratory alterations in intermittent hypoxia: the oxidative link. European Respiratory Journal, 2010, 36, 143-150.	3.1	110
59	Cardiorespiratory Alterations Induced by Intermittent Hypoxia in a Rat Model of Sleep Apnea. Advances in Experimental Medicine and Biology, 2010, 669, 271-274.	0.8	23
60	Electrical signaling, stomatal conductance, ABA and Ethylene content in avocado trees in response to root hypoxia. Plant Signaling and Behavior, 2009, 4, 100-108.	1.2	34
61	Carotid body potentiation induced by intermittent hypoxia: Implications for cardiorespiratory changes induced by sleep apnoea. Clinical and Experimental Pharmacology and Physiology, 2009, 36, 1197-1204.	0.9	73
62	Nitric oxide regulates neurogenesis in adult olfactory epithelium in vitro. Nitric Oxide - Biology and Chemistry, 2009, 20, 238-252.	1.2	19
63	Neurotransmitters in Carotid Body Function: The Case of Dopamine – Invited Article. Advances in Experimental Medicine and Biology, 2009, 648, 137-143.	0.8	25
64	Evidence for Histamine as a New Modulator of Carotid Body Chemoreception. Advances in Experimental Medicine and Biology, 2009, 648, 177-184.	0.8	4
65	Neuroglobin in Aging Carotid Bodies. Advances in Experimental Medicine and Biology, 2009, 648, 191-195.	0.8	13
66	Cardioventilatory Acclimatization Induced by Chronic Intermittent Hypoxia. Advances in Experimental Medicine and Biology, 2009, 648, 329-335.	0.8	9
67	Sustained Hypoxia Enhances TASK-like Current Inhibition by Acute Hypoxia in Rat Carotid Body Type-I Cells. Advances in Experimental Medicine and Biology, 2009, 648, 83-88.	0.8	6
68	Modulatory effects of histamine on cat carotid body chemoreception. Respiratory Physiology and Neurobiology, 2008, 164, 401-410.	0.7	11
69	Contribution of Endothelin-1 and Endothelin A and B Receptors to the Enhanced Carotid Body Chemosensory Responses Induced by Chronic Intermittent Hypoxia. Advances in Experimental Medicine and Biology, 2008, 605, 228-232.	0.8	13
70	Root to leaf electrical signaling in avocado in response to light and soil water content. Journal of Plant Physiology, 2008, 165, 1070-1078.	1.6	40
71	Dynamic time-varying analysis of heart rate and blood pressure variability in cats exposed to short-term chronic intermittent hypoxia. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 295, R28-R37.	0.9	33
72	Expression and Immunolocalization of Endothelin Peptides and Its Receptors, ETA and ETB, in the Carotid Body Exposed to Chronic Intermittent Hypoxia. Journal of Histochemistry and Cytochemistry, 2007, 55, 167-174.	1.3	37

#	Article	IF	CITATIONS
73	Electrical and pharmacological properties of petrosal ganglion neurons that innervate the carotid body. Respiratory Physiology and Neurobiology, 2007, 157, 130-139.	0.7	41
74	FisiopatologÃa de la hipertensión asociada al sÃndrome de apnea obstructiva del sueño: Evidencia de estudios clÁnicos y modelos animales de hipoxia crónica intermitente. Revista Medica De Chile, 2007, 135, .	0.1	2
75	Effects of intermittent hypoxia on cat petrosal ganglion responses induced by acetylcholine, adenosine 5′-triphosphate and NaCN. Brain Research, 2007, 1128, 86-90.	1.1	6
76	ATP- and ACh-induced responses in isolated cat petrosal ganglion neurons. Brain Research, 2007, 1131, 60-67.	1.1	17
77	Autonomic cardiovascular effects of brief exposure to chronic intermittent hypoxia detected using analysis of heart rate variability and spontaneous baroreflex sensitivity. FASEB Journal, 2007, 21, A949.	0.2	Ο
78	Endothelins in the cat petrosal ganglion and carotid body: Effects and immunolocalization. Brain Research, 2006, 1069, 154-158.	1.1	19
79	Electrophysiological characterization of nicotinic acetylcholine receptors in cat petrosal ganglion neurons in culture: Effects of cytisine and its bromo derivatives. Brain Research, 2006, 1072, 72-78.	1.1	15
80	Contribution of endothelin-1 to the enhanced carotid body chemosensory responses induced by chronic intermittent hypoxia. Brain Research, 2006, 1086, 152-159.	1.1	82
81	Carotid Body Transmitters Actions on Rabbit Petrosal Ganglion in Vitro. , 2006, 580, 331-337.		12
82	Neuroglobin, a New Oxygen Binding Protein is Present in the Carotid Body and Increases after Chronic Intermittent Hypoxia. , 2006, 580, 15-19.		12
83	Chronic Intermittent Hypoxia Enhances Carotid Body Chemosensory Responses to Acute Hypoxia. , 2006, 580, 227-232.		6
84	Role of Endothelin-1 on the Enhanced Carotid Body Activity Induced by Chronic Intermittent Hypoxia. , 2006, 580, 345-350.		5
85	Cardiovascular and ventilatory acclimatization induced by chronic intermittent hypoxia: A role for the carotid body in the pathophysiology of sleep apnea. Biological Research, 2005, 38, 335-40.	1.5	31
86	Chronic intermittent hypoxia enhances cat chemosensory and ventilatory responses to hypoxia. Journal of Physiology, 2004, 560, 577-586.	1.3	184
87	Neurotransmission in the carotid body: transmitters and modulators between glomus cells and petrosal ganglion nerve terminals. Brain Research Reviews, 2004, 47, 46-53.	9.1	163
88	Endothelins and Nitric Oxide: Vasoactive Modulators of Carotid Body Chemoreception. Current Neurovascular Research, 2004, 1, 465-473.	0.4	27
89	Catecholamine release from isolated sensory neurons of cat petrosal ganglia in tissue culture. Brain Research, 2003, 984, 104-110.	1.1	11
90	ACh and ATP mediate excitatory transmission in cat carotid identified chemoreceptor units in vitro. Brain Research, 2003, 988, 154-163.	1.1	60

#	Article	IF	CITATIONS
91	Inhibitory effects of NO on carotid body: contribution of neural and endothelial nitric oxide synthase isoforms. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 284, L57-L68.	1.3	36
92	Carotid Chemosensory Neurons in the Petrosal Ganglia are Excited by ACh and ATP. Advances in Experimental Medicine and Biology, 2003, 536, 321-326.	0.8	2
93	Contribution of Neural and Endothelial Isoforms of the Nitric Oxide Synthase to the Inhibitory Effects of NO on the Cat Carotid Body. Advances in Experimental Medicine and Biology, 2003, 536, 345-351.	0.8	5
94	Nitric Oxide Modulation of Carotid Chemoreception. Advances in Experimental Medicine and Biology, 2002, 475, 761-768.	0.8	2
95	Carotid body chemosensory excitation induced by nitric oxide: involvement of oxidative metabolism. Respiratory Physiology and Neurobiology, 2002, 131, 175-187.	0.7	25
96	The Excitatory Effect of Nitric Oxide on Carotid Body Chemoreception is Blocked by Oligomycin. Advances in Experimental Medicine and Biology, 2001, 499, 55-60.	0.8	0
97	Nitric oxide and carotid body chemoreception. Biological Research, 2001, 34, 135-9.	1.5	12
98	Lack of correlation between cholinergic-induced changes in chemosensory activity and dopamine release from the cat carotid body in vitro. Brain Research, 2000, 868, 380-385.	1.1	8
99	Effects of nitric oxide gas on cat carotid body chemosensory response to hypoxia. Brain Research, 2000, 855, 282-286.	1.1	23
100	Dual effects of nitric oxide on cat carotid body chemoreception. Journal of Applied Physiology, 2000, 89, 1005-1012.	1.2	49
101	Adenosine triphosphate-induced peripheral nerve discharges generated from the cat petrosal ganglion in vitro. Neuroscience Letters, 2000, 282, 185-188.	1.0	39
102	Modulatory effect of nitric oxide on acetylcholine-induced activation of cat petrosal ganglion neurons in vitro. Brain Research, 1999, 825, 194-198.	1.1	24
103	Dopamine modulates carotid nerve responses induced by acetylcholine on the cat petrosal ganglion in vitro. Brain Research, 1999, 831, 97-103.	1.1	25
104	Responses to hypoxia of petrosal ganglia in vitro. Brain Research, 1999, 845, 28-34.	1.1	19
105	Selective activation of carotid nerve fibers by acetylcholine applied to the cat petrosal ganglion in vitro. Brain Research, 1998, 786, 47-54.	1.1	50
106	Sodium nitroprusside blocks the cat carotid chemosensory inhibition induced by dopamine, but not that by hyperoxia. Brain Research, 1998, 799, 26-34.	1.1	16
107	Anion exchanger and chloride channel in cat carotid body chemotransduction. Journal of the Autonomic Nervous System, 1998, 70, 23-31.	1.9	17
108	Effects of CO2- HCO 3 â^' on catecholamine efflux from cat carotid body. Journal of Applied Physiology, 1998, 84, 60-68.	1.2	12

#	ARTICLE	IF	CITATIONS
109	Cat carotid body chemosensory responses to non-hypoxic stimuli are inhibited by sodium nitroprusside in situ and in vitro. Brain Research, 1997, 767, 384-387.	1.1	20
110	Acid-sensing by carotid body is inhibited by blockers of voltage-sensitive Ca2+ channels. Brain Research, 1997, 769, 396-399.	1.1	18
111	Testing the metabolic hypothesis of O2 chemoreception in the cat carotid body in vitro. Journal of Applied Physiology, 1994, 76, 1317-1323.	1.2	20
112	Effects of dopaminergic blockade upon carotid chemosensory activity and its hypoxia-induced excitation. Brain Research, 1994, 663, 145-154.	1.1	54
113	CO reveals dual mechanisms of O2 chemoreception in the cat carotid body. Respiration Physiology, 1993, 94, 227-240.	2.8	59
114	Role of ClHCO3 - Exchanger and Anion Channel in the Cat Carotid Body Function. , 1992, , 119-122.		1
115	Carotid body chemoreception in the absence and presence of CO2HCO3â^'. Brain Research, 1991, 568, 253-260.	1.1	36
116	CONFREG: a BASIC program for calculating and plotting confidence regions based on correlational analyses. Computer Methods and Programs in Biomedicine, 1989, 29, 37-42.	2.6	7
117	Flow-dependent chemosensory activity in the carotid body superfused in vitro. Brain Research, 1988, 455, 31-37.	1.1	16
118	Microtubule density and size of axons in early diabetes: Implications for nerve cell homeostasis. Experimental Neurology, 1985, 88, 165-175.	2.0	22
119	Contribution of Autonomic Nervous System to the Hypertension Induced by Obstructive Sleep Apnea. , $0,\ldots$		0