List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1854540/publications.pdf Version: 2024-02-01

LIMPLE

#	Article	IF	CITATIONS
1	Tollip Inhibits IL-33 Release and Inflammation in Influenza A Virus-Infected Mouse Airways. Journal of Innate Immunity, 2023, 15, 67-77.	1.8	3
2	Epigenomic and transcriptomic analyses reveal differences between low-grade inflammation and severe exhaustion in LPS-challenged murine monocytes. Communications Biology, 2022, 5, 102.	2.0	20
3	Generation of resolving memory neutrophils through pharmacological training with 4-PBA or genetic deletion of TRAM. Cell Death and Disease, 2022, 13, 345.	2.7	3
4	Single Cell RNA-Seq and Machine Learning Reveal Novel Subpopulations in Low-Grade Inflammatory Monocytes With Unique Regulatory Circuits. Frontiers in Immunology, 2021, 12, 627036.	2.2	12
5	A resolving role for neutrophil CD11d in facilitating neutrophil survival and macrophage efferocytosis during sepsis?. Journal of Leukocyte Biology, 2021, 109, 861-863.	1.5	0
6	TRAM-Related TLR4 Pathway Antagonized by IRAK-M Mediates the Expression of Adhesion/Coactivating Molecules on Low-Grade Inflammatory Monocytes. Journal of Immunology, 2021, 206, 2980-2988.	0.4	9
7	Resolving monocytes generated through TRAM deletion attenuate atherosclerosis. JCI Insight, 2021, 6, .	2.3	18
8	Differential training of innate leukocytes getting compartmentalized. Journal of Leukocyte Biology, 2021, , .	1.5	0
9	Development of Exhausted Memory Monocytes and Underlying Mechanisms. Frontiers in Immunology, 2021, 12, 778830.	2.2	31
10	Innate Neutrophil Memory Dynamics in Disease Pathogenesis. Handbook of Experimental Pharmacology, 2021, , 1.	0.9	1
11	Signal-Strength and History-Dependent Innate Immune Memory Dynamics in Health and Disease. Handbook of Experimental Pharmacology, 2021, , 1.	0.9	4
12	Tollip Inhibits ST2 Signaling in Airway Epithelial Cells Exposed to Type 2 Cytokines and Rhinovirus. Journal of Innate Immunity, 2020, 12, 103-115.	1.8	14
13	Neutrophils Deficient in Innate Suppressor IRAK-M Enhances Anti-tumor Immune Responses. Molecular Therapy, 2020, 28, 89-99.	3.7	21
14	Phenylbutyrate facilitates homeostasis of non-resolving inflammatory macrophages. Innate Immunity, 2020, 26, 62-72.	1.1	11
15	Polarization of Low-Grade Inflammatory Monocytes Through TRAM-Mediated Up-Regulation of Keap1 by Super-Low Dose Endotoxin. Frontiers in Immunology, 2020, 11, 1478.	2.2	9
16	<i>Fusobacterium nucleatum</i> host-cell binding and invasion induces IL-8 and CXCL1 secretion that drives colorectal cancer cell migration. Science Signaling, 2020, 13, .	1.6	148
17	TICAM2-related pathway mediates neutrophil exhaustion. Scientific Reports, 2020, 10, 14397.	1.6	18
18	Editorial: Innate Immunity Programming and Memory in Resolving and Non-Resolving Inflammation. Frontiers in Immunology, 2020, 11, 177.	2.2	3

#	Article	IF	CITATIONS
19	Innate Priming of Neutrophils Potentiates Systemic Multiorgan Injury. ImmunoHorizons, 2020, 4, 392-401.	0.8	0
20	EGR1 recruits TET1 to shape the brain methylome during development and upon neuronal activity. Nature Communications, 2019, 10, 3892.	5.8	95
21	Enhanced Neutrophil Immune Homeostasis Due to Deletion of PHLPP. Frontiers in Immunology, 2019, 10, 2127.	2.2	6
22	Divergent age-dependent peripheral immune transcriptomic profile following traumatic brain injury. Scientific Reports, 2019, 9, 8564.	1.6	15
23	Super-Low Dose Lipopolysaccharide Dysregulates Neutrophil Migratory Decision-Making. Frontiers in Immunology, 2019, 10, 359.	2.2	27
24	Novel reprogramming of neutrophils modulates inflammation resolution during atherosclerosis. Science Advances, 2019, 5, eaav2309.	4.7	56
25	Modeling the Bistable Dynamics of the Innate Immune System. Bulletin of Mathematical Biology, 2019, 81, 256-276.	0.9	8
26	Enhanced tumor immune surveillance through neutrophil reprogramming due to Tollip deficiency. JCI Insight, 2019, 4, .	2.3	23
27	Cellular and molecular mechanisms involved in the resolution of innate leukocyte inflammation. Journal of Leukocyte Biology, 2018, 104, 535-541.	1.5	10
28	Toll-Interacting Protein, Tollip, Inhibits IL-13-Mediated Pulmonary Eosinophilic Inflammation in Mice. Journal of Innate Immunity, 2018, 10, 106-118.	1.8	17
29	3D Microtissue Models to Analyze the Effects of Ultralow Dose LPS on Vascular Sprouting Dynamics in the Tumor Microenvironment. ACS Biomaterials Science and Engineering, 2018, 4, 357-367.	2.6	1
30	Suppression of Neutrophil Antimicrobial Functions by Total Particulate Matter From Cigarette Smoke. Frontiers in Immunology, 2018, 9, 2274.	2.2	31
31	Toll-interacting protein differentially modulates HIF1α and STAT5-mediated genes in fibroblasts. Journal of Biological Chemistry, 2018, 293, 12239-12247.	1.6	7
32	Enhanced Mucosal Defense and Reduced Tumor Burden in Mice with the Compromised Negative Regulator IRAK-M. EBioMedicine, 2017, 15, 36-47.	2.7	20
33	Tollip Deficiency Alters Atherosclerosis and Steatosis by Disrupting Lipophagy. Journal of the American Heart Association, 2017, 6, .	1.6	36
34	Programming and memory dynamics of innate leukocytes during tissue homeostasis and inflammation. Journal of Leukocyte Biology, 2017, 102, 719-726.	1.5	9
35	Deletion of interleukin 1 receptor-associated kinase 1 (Irak1) improves glucose tolerance primarily by increasing insulin sensitivity in skeletal muscle. Journal of Biological Chemistry, 2017, 292, 12339-12350.	1.6	28
36	A novel mouse model of conditional IRAK-M deficiency in myeloid cells: application in lung Pseudomonas aeruginosa infection. Innate Immunity, 2017, 23, 206-215.	1.1	3

#	Article	IF	CITATIONS
37	Neutrophil programming dynamics and its disease relevance. Science China Life Sciences, 2017, 60, 1168-1177.	2.3	4
38	Autophagy regulates accumulation and functional activity of granulocytic myeloid-derived suppressor cells via STAT3 signaling in endotoxin shock. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 2796-2807.	1.8	22
39	Toll-interacting protein deficiency promotes neurodegeneration via impeding autophagy completion in high-fat diet-fed ApoEâ^'/â^' mouse model. Brain, Behavior, and Immunity, 2017, 59, 200-210.	2.0	24
40	Toll-Interacting Protein in Resolving and Non-Resolving Inflammation. Frontiers in Immunology, 2017, 8, 511.	2.2	42
41	Molecular Mechanisms That Underlie the Dynamic Adaptation of Innate Monocyte Memory to Varying Stimulant Strength of TLR Ligands. Frontiers in Immunology, 2016, 7, 497.	2.2	51
42	Lowâ€grade inflammatory polarization of monocytes impairs wound healing. Journal of Pathology, 2016, 238, 571-583.	2.1	50
43	Reprogramming macrophage orientation by microRNA 146b targeting transcription factor IRF5. EBioMedicine, 2016, 14, 83-96.	2.7	53
44	Deficiency in Toll-interacting protein (Tollip) skews inflamed yet incompetent innate leukocytes in vivo during DSS-induced septic colitis. Scientific Reports, 2016, 6, 34672.	1.6	25
45	The persistence of low-grade inflammatory monocytes contributes to aggravated atherosclerosis. Nature Communications, 2016, 7, 13436.	5.8	135
46	Subclinical-Dose Endotoxin Sustains Low-Grade Inflammation and Exacerbates Steatohepatitis in High-Fat Diet–Fed Mice. Journal of Immunology, 2016, 196, 2300-2308.	0.4	44
47	Dynamic modulation of innate immunity programming and memory. Science China Life Sciences, 2016, 59, 38-43.	2.3	10
48	Tissue-resident dendritic cells and diseases involving dendritic cell malfunction. International Immunopharmacology, 2016, 34, 1-15.	1.7	31
49	Trehalose-Mediated Autophagy Impairs the Anti-Viral Function of Human Primary Airway Epithelial Cells. PLoS ONE, 2015, 10, e0124524.	1.1	20
50	Myeloid cell-derived inducible nitric oxide synthase suppresses M1 macrophage polarization. Nature Communications, 2015, 6, 6676.	5.8	162
51	Super-low Dose Endotoxin Pre-conditioning Exacerbates Sepsis Mortality. EBioMedicine, 2015, 2, 324-333.	2.7	59
52	Alteration of Lysosome Fusion and Low-grade Inflammation Mediated by Super-low-dose Endotoxin. Journal of Biological Chemistry, 2015, 290, 6670-6678.	1.6	44
53	A new innate sensor for an ancient molecular pattern. Science China Life Sciences, 2014, 57, 1236-1237.	2.3	0
54	Dynamic Modulation of Innate Immune Response by Varying Dosages of Lipopolysaccharide (LPS) in Human Monocytic Cells. Journal of Biological Chemistry, 2014, 289, 21584-21590.	1.6	54

#	Article	IF	CITATIONS
55	Detecting intracellular translocation of native proteins quantitatively at the single cell level. Chemical Science, 2014, 5, 2530-2535.	3.7	9
56	Molecular and Cellular Mechanisms Responsible for Cellular Stress and Low-grade Inflammation Induced by a Super-low Dose of Endotoxin. Journal of Biological Chemistry, 2014, 289, 16262-16269.	1.6	33
57	Innate Immune Programing by Endotoxin and Its Pathological Consequences. Frontiers in Immunology, 2014, 5, 680.	2.2	189
58	The Ubiquitin Ligase Stub1 Negatively Modulates Regulatory T Cell Suppressive Activity by Promoting Degradation of the Transcription Factor Foxp3. Immunity, 2013, 39, 272-285.	6.6	260
59	Interleukin-1 receptor-associated kinase M (IRAK-M) promotes human rhinovirus infection in lung epithelial cells via the autophagic pathway. Virology, 2013, 446, 199-206.	1.1	35
60	The Mechanism of the Initiation and Progression of Glioma. Journal of Applied Mechanics, Transactions ASME, 2013, 80, .	1.1	0
61	Molecular Mechanisms Responsible for the Reduced Expression of Cholesterol Transporters From Macrophages by Low-Dose Endotoxin. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 24-33.	1.1	40
62	Molecular Mechanism Responsible for the Priming of Macrophage Activation. Journal of Biological Chemistry, 2013, 288, 3897-3906.	1.6	114
63	Change in Mononuclear Leukocyte Responsiveness in Midpregnancy and Subsequent Preterm Birth. Obstetrics and Gynecology, 2013, 121, 805-811.	1.2	21
64	Causes and consequences of low grade endotoxemia and inflammatory diseases. Frontiers in Bioscience - Scholar, 2013, S5, 754-765.	0.8	60
65	Potent suppression of arginase 1 expression in murine macrophages by low dose endotoxin. American Journal of Clinical and Experimental Immunology, 2013, 2, 117-23.	0.2	7
66	Network Topologies and Dynamics Leading to Endotoxin Tolerance and Priming in Innate Immune Cells. PLoS Computational Biology, 2012, 8, e1002526.	1.5	51
67	Molecular Mechanisms Responsible for the Selective and Low-Grade Induction of Proinflammatory Mediators in Murine Macrophages by Lipopolysaccharide. Journal of Immunology, 2012, 189, 1014-1023.	0.4	118
68	Genomic DNA Extraction from Cells by Electroporation on an Integrated Microfluidic Platform. Analytical Chemistry, 2012, 84, 9632-9639.	3.2	45
69	A simple theoretical framework for understanding heterogeneous differentiation of CD4+ T cells. BMC Systems Biology, 2012, 6, 66.	3.0	49
70	Reduced oxidative tissue damage during endotoxemia in IRAK-1 deficient mice. Molecular Immunology, 2012, 50, 244-252.	1.0	25
71	Molecular Mechanisms and Pathological Consequences of Endotoxin Tolerance and Priming. Archivum Immunologiae Et Therapiae Experimentalis, 2012, 60, 13-18.	1.0	98
72	Molecular Mechanism Underlying Persistent Induction of LCN2 by Lipopolysaccharide in Kidney Fibroblasts. PLoS ONE, 2012, 7, e34633.	1.1	16

#	Article	IF	CITATIONS
73	Histone modification analysis by chromatin immunoprecipitation from a low number of cells on a microfluidic platform. Lab on A Chip, 2011, 11, 2842.	3.1	35
74	The C2 domain of Tollip, a Toll-like receptor signalling regulator, exhibits broad preference for phosphoinositides. Biochemical Journal, 2011, 435, 597-608.	1.7	35
75	Low-Dose Endotoxin Induces Inflammation by Selectively Removing Nuclear Receptors and Activating CCAAT/Enhancer-Binding Protein δ. Journal of Immunology, 2011, 186, 4467-4473.	0.4	69
76	A Mathematical Model for the Reciprocal Differentiation of T Helper 17 Cells and Induced Regulatory T Cells. PLoS Computational Biology, 2011, 7, e1002122.	1.5	76
77	Backbone 1H, 15N, and 13C Resonance Assignments and Secondary Structure of the Tollip CUE Domain. Molecules and Cells, 2010, 30, 581-586.	1.0	9
78	Deletion of PPAR-γ in immune cells enhances susceptibility to antiglomerular basement membrane disease. Journal of Inflammation Research, 2010, 3, 127.	1.6	5
79	Toll-like receptor 4 modulates skeletal muscle substrate metabolism. American Journal of Physiology - Endocrinology and Metabolism, 2010, 298, E988-E998.	1.8	130
80	Interleukin-1 Receptor-Associated Kinase-1 (IRAK-1) functionally associates with PKCÉ› and VASP in the regulation of macrophage migration. Molecular Immunology, 2010, 47, 1278-1282.	1.0	12
81	Molecular mechanism underlying the inflammatory complication of leptin in macrophages. Molecular Immunology, 2010, 47, 2515-2518.	1.0	35
82	Epigallocatechin-3-gallate (EGCG) attenuates inflammation in MRL/lpr mouse mesangial cells. Cellular and Molecular Immunology, 2010, 7, 123-132.	4.8	84
83	Mathematical Modeling for the Pathogenesis of Alzheimer's Disease. PLoS ONE, 2010, 5, e15176.	1.1	54
84	Molecular mechanism underlying LPSâ€induced generation of reactive oxygen species in macrophages. FASEB Journal, 2010, 24, 422.3.	0.2	6
85	Macrophages and fibroblasts during inflammation, tissue damage and organ injury. Frontiers in Bioscience - Landmark, 2009, Volume, 3988.	3.0	97
86	IRAK-1 Contributes to Lipopolysaccharide-induced Reactive Oxygen Species Generation in Macrophages by Inducing NOX-1 Transcription and Rac1 Activation and Suppressing the Expression of Antioxidative Enzymes. Journal of Biological Chemistry, 2009, 284, 35403-35411.	1.6	93
87	Endotoxin tolerance dysregulates MyD88- and Toll/IL-1R domain-containing adapter inducing IFN-β-dependent pathways and increases expression of negative regulators of TLR signaling. Journal of Leukocyte Biology, 2009, 86, 863-875.	1.5	115
88	The Interleukin-1 Receptor-Associated Kinase M Selectively Inhibits the Alternative, Instead of the Classical NFI°B Pathway. Journal of Innate Immunity, 2009, 1, 164-174.	1.8	28
89	An Innate Immunity Signaling Process Suppresses Macrophage ABCA1 Expression through IRAK-1-Mediated Downregulation of Retinoic Acid Receptor α and NFATc2. Molecular and Cellular Biology, 2009, 29, 5989-5997.	1.1	68
90	Differential Regulation of Foxp3 and IL-17 Expression in CD4 T Helper Cells by IRAK-1. Journal of Immunology, 2009, 182, 5763-5769.	0.4	68

#	Article	IF	CITATIONS
91	Activation of AMPK inhibits inflammation in MRL/lpr mouse mesangial cells. Clinical and Experimental Immunology, 2009, 156, 542-551.	1.1	99
92	Molecular mechanism underlying the suppression of lipid oxidation during endotoxemia. Molecular Immunology, 2009, 47, 420-425.	1.0	56
93	Inflammatory Signaling Networks as Targets for Pharmacological Intervention of Chronic Diseases. Current Signal Transduction Therapy, 2009, 4, 103-110.	0.3	0
94	MAP kinase phosphatase-1, a critical negative regulator of the innate immune response. International Journal of Clinical and Experimental Medicine, 2009, 2, 48-67.	1.3	41
95	The interleukin-1 receptor associated kinase 1 contributes to the regulation of NFAT. Molecular Immunology, 2008, 45, 3902-3908.	1.0	18
96	The involvement of the interleukin-1 receptor-associated kinases (IRAKs) in cellular signaling networks controlling inflammation. Cytokine, 2008, 42, 1-7.	1.4	53
97	Differential regulation of interleukin-1 receptor associated kinase 1 (IRAK1) splice variants. Molecular Immunology, 2007, 44, 900-905.	1.0	44
98	Loss of the innate immunity negative regulator IRAK-M leads to enhanced host immune defense against tumor growth. Molecular Immunology, 2007, 44, 3453-3461.	1.0	40
99	Failure of TLR4-Driven NF-κB Activation to Stimulate Virus Replication in Models of HIV Type 1 Activation. AIDS Research and Human Retroviruses, 2007, 23, 1387-1395.	0.5	28
100	Assembly of Inflammation-Related Genes for Pathway-Focused Genetic Analysis. PLoS ONE, 2007, 2, e1035.	1.1	89
101	Differential regulation and role of interleukin-1 receptor associated kinase-M in innate immunity signaling. Cellular Signalling, 2007, 19, 1596-1601.	1.7	46
102	The association between innate immunity gene (IRAK1) and C-reactive protein in the Diabetes Heart Study. Experimental and Molecular Pathology, 2007, 82, 280-283.	0.9	37
103	Differential Regulation of Key Signaling Molecules in Innate Immunity and Human Diseases. , 2007, 598, 49-61.		3
104	The p53-targeting human phosphatase hCdc14A interacts with the Cdk1/cyclin B complex and is differentially expressed in human cancers. Molecular Cancer, 2006, 5, 25.	7.9	28
105	Regulations and Roles of the Interleukin-1 Receptor Associated Kinases (IRAKs) in Innate and Adaptive Immunity. Immunologic Research, 2006, 35, 295-302.	1.3	48
106	Intervention of Toll-like Receptor-Mediated Human Innate Immunity and Inflammation by Synthetic Compounds and Naturally Occurring Products. Current Medicinal Chemistry, 2006, 13, 1389-1395.	1.2	22
107	Interactions of Sequence Variants in Interleukin-1 Receptor–Associated Kinase4 and the Toll-Like Receptor 6-1-10 Gene Cluster Increase Prostate Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2006, 15, 480-485.	1.1	57
108	Endotoxin Tolerance Disrupts Chromatin Remodeling and NF-κB Transactivation at the IL-1β Promoter. Journal of Immunology, 2005, 175, 461-468.	0.4	174

#	Article	IF	CITATIONS
109	Sequence Variants in Toll-Like Receptor Gene Cluster (TLR6-TLR1-TLR10) and Prostate Cancer Risk. Journal of the National Cancer Institute, 2005, 97, 525-532.	3.0	169
110	Differential induction of apoptosis by LPS and taxol in monocytic cells. Molecular Immunology, 2005, 42, 1049-1055.	1.0	14
111	Regulation of Innate Immunity Signaling and its Connection with Human Diseases. Inflammation and Allergy: Drug Targets, 2004, 3, 81-86.	3.1	41
112	Sequence Variants of Toll-Like Receptor 4 Are Associated with Prostate Cancer Risk. Cancer Research, 2004, 64, 2918-2922.	0.4	214
113	IRAK1 Serves as a Novel Regulator Essential for Lipopolysaccharide-induced Interleukin-10 Gene Expression. Journal of Biological Chemistry, 2004, 279, 51697-51703.	1.6	104
114	Characterization of Tollip protein upon Lipopolysaccharide challenge. Molecular Immunology, 2004, 41, 85-92.	1.0	90
115	Association of an IL-1A 3′UTR polymorphism with end-stage renal disease and IL-1α expression. Kidney International, 2003, 63, 1211-1219.	2.6	17
116	Distinct post-receptor alterations generate gene- and signal-selective adaptation and cross-adaptation of TLR4 and TLR2 in human leukocytes. Journal of Endotoxin Research, 2003, 9, 39-44.	2.5	15
117	Lipopolysaccharide- and Lipoteichoic Acid-Induced Tolerance and Cross-Tolerance: Distinct Alterations in IL-1 Receptor-Associated Kinase. Journal of Immunology, 2002, 168, 6136-6141.	0.4	143
118	Regulation of IL-1 Receptor-Associated Kinases by Lipopolysaccharide. Journal of Immunology, 2002, 168, 3910-3914.	0.4	78
119	ENDOTOXIN-ADAPTED SEPTIC SHOCK LEUKOCYTES SELECTIVELY ALTER PRODUCTION OF SIL-1RA AND IL-1Î ² . Shock, 2001, 16, 430-437.	1.0	21
120	The Phosphatidylinositol 3-Kinase Pathway Selectively Controls sIL-1RA Not Interleukin-1β Production in the Septic Leukocytes. Journal of Biological Chemistry, 2001, 276, 20234-20239.	1.6	32
121	Activation of Interleukin-1 Receptor-Associated Kinase by Gram-Negative Flagellin. Infection and Immunity, 2001, 69, 4424-4429.	1.0	85
122	Characterization of Interleukin-1 Receptor-associated Kinase in Normal and Endotoxin-tolerant Cells. Journal of Biological Chemistry, 2000, 275, 23340-23345.	1.6	220
123	The Human Cdc14 Phosphatases Interact with and Dephosphorylate the Tumor Suppressor Protein p53. Journal of Biological Chemistry, 2000, 275, 2410-2414.	1.6	89
124	Form, function, and regulation of protein tyrosine phosphatases and their involvement in human diseases. Seminars in Immunology, 2000, 12, 75-84.	2.7	132
125	In vitro and in vivo reconstitution and stability of vertebrate chromosome ends. Nucleic Acids Research, 1998, 26, 2908-2908.	6.5	16
126	A Family of Putative Tumor Suppressors Is Structurally and Functionally Conserved in Humans and Yeast. Journal of Biological Chemistry, 1997, 272, 29403-29406.	1.6	141