Dean Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/185450/publications.pdf

Version: 2024-02-01

1163117 940533 21 507 8 16 citations h-index g-index papers 25 25 25 409 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	On a characteristic method for the S neutron transport equation. Annals of Nuclear Energy, 2022, 165, 108670.	1.8	O
2	An analytical nodal method for solving the S transport equation in 2-D Cartesian geometry. Progress in Nuclear Energy, 2022, 147, 104167.	2.9	0
3	Enhancing lpCMFD Acceleration with Successive Overrelaxation for Neutron Transport Source Iteration. Nuclear Science and Engineering, 2021, 195, 1-12.	1.1	4
4	A Revisit to CMFD Schemes: Fourier Analysis and Enhancement. Energies, 2021, 14, 424.	3.1	5
5	Development of the reactor core isolation cooling system model for the extended station black-out accident. Nuclear Engineering and Design, 2021, 377, 111139.	1.7	1
6	A New Proof of the Asymptotic Diffusion Limit of the S <i>_N</i> Neutron Transport Equation. Nuclear Science and Engineering, 2021, 195, 1347-1358.	1.1	2
7	DEMONSTRATION OF A LINEAR PROLONGATION CMFD METHOD ON MOC. EPJ Web of Conferences, 2021, 247, 03006.	0.3	O
8	Modeling and assessment of two-phase transonic steam flow with condensation through the convergent-divergent nozzle. Nuclear Engineering and Design, 2020, 364, 110632.	1.7	2
9	A Novel Analytical Nodal Method for Solution of the SN Transport Equation. , 2020, , .		1
10	Application of lpCMFD for K-Eigenvalue Transport Problems with Feedback. , 2020, , .		3
11	Fluoride-Salt-Cooled High-Temperature Reactor (FHR) Using British Advanced Gas-Cooled Reactor (AGR) Refueling Technology and Decay Heat Removal Systems That Prevent Salt Freezing. Nuclear Technology, 2019, 205, 1127-1142.	1.2	19
12	The Asymptotic Diffusion Limit of Numerical Schemes for the S <i>_N</i> Transport Equation. Nuclear Science and Engineering, 2019, 193, 1339-1354.	1.1	6
13	High-Order Lax-Friedrichs WENO Fast Sweeping Methods for the SN Neutron Transport Equation. Nuclear Science and Engineering, 2019, 193, 982-990.	1.1	9
14	A Linear Prolongation Approach to Stabilizing CMFD. Nuclear Science and Engineering, 2018, 190, 45-55.	1.1	42
15	A Local Adaptive Coarse-Mesh Nonlinear Diffusion Acceleration Scheme for Neutron Transport Calculations. Nuclear Science and Engineering, 2018, 189, 272-281.	1.1	2
16	A Coarse-Mesh Diffusion Synthetic Acceleration Method with Local <i>hp</i> Adaptation for Neutron Transport Calculations. Nuclear Science and Engineering, 2018, 192, 208-217.	1.1	3
17	Thermal hydraulics analysis of the Advanced High Temperature Reactor. Nuclear Engineering and Design, 2015, 294, 73-85.	1.7	10
18	The effect of fuel thermal conductivity on the behavior of LWR cores during loss-of-coolant accidents. Journal of Nuclear Materials, 2014, 448, 512-519.	2.7	61

#	Article	IF	CITATIONS
19	Preliminary assessment of accident-tolerant fuels on LWR performance during normal operation and under DB and BDB accident conditions. Journal of Nuclear Materials, 2014, 448, 520-533.	2.7	215
20	Implementation and assessment of high-resolution numerical methods in TRACE. Nuclear Engineering and Design, 2013, 263, 327-341.	1.7	20
21	Study of Fukushima Daiichi Nuclear Power Station Unit 4 Spent-Fuel Pool. Nuclear Technology, 2012, 180, 205-215.	1.2	38