Rupa Sridharan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1854370/publications.pdf

Version: 2024-02-01

		759233	940533
17	1,294 citations	12	16
papers	citations	h-index	g-index
19	19	19	2302
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Role of the Murine Reprogramming Factors in the Induction of Pluripotency. Cell, 2009, 136, 364-377.	28.9	579
2	Proteomic and genomic approaches reveal critical functions of H3K9 methylation and heterochromatin protein- 1^3 in reprogramming to pluripotency. Nature Cell Biology, 2013, 15, 872-882.	10.3	205
3	A predictive modeling approach for cell line-specific long-range regulatory interactions. Nucleic Acids Research, 2015, 43, 8694-8712.	14.5	118
4	Beta Cell Dedifferentiation Induced by IRE1α Deletion Prevents Type 1 Diabetes. Cell Metabolism, 2020, 31, 822-836.e5.	16.2	84
5	The role of α-ketoglutarate–dependent proteins in pluripotency acquisition and maintenance. Journal of Biological Chemistry, 2019, 294, 5408-5419.	3.4	50
6	Methyl-Metabolite Depletion Elicits Adaptive Responses to Support Heterochromatin Stability and Epigenetic Persistence. Molecular Cell, 2020, 78, 210-223.e8.	9.7	45
7	Defining Reprogramming Checkpoints from Single-Cell Analyses of Induced Pluripotency. Cell Reports, 2019, 27, 1726-1741.e5.	6.4	44
8	Collaborative rewiring of the pluripotency network by chromatin and signalling modulating pathways. Nature Communications, 2015, 6, 6188.	12.8	34
9	Initial characterization of histone H3 serine 10 O-acetylation. Epigenetics, 2013, 8, 1101-1113.	2.7	27
10	Compartmentalization of HP1 Proteins in Pluripotency Acquisition and Maintenance. Stem Cell Reports, 2018, 10, 627-641.	4.8	20
11	Alternative Routes to Induced Pluripotent Stem Cells Revealed by Reprogramming of the Neural Lineage. Stem Cell Reports, 2016, 6, 302-311.	4.8	19
12	Small RNAs Loom Large During Reprogramming. Cell Stem Cell, 2011, 8, 599-601.	11.1	17
13	DOT1L inhibition enhances pluripotency beyond acquisition of epithelial identity and without immediate suppression of the somatic transcriptome. Stem Cell Reports, 2022, 17, 384-396.	4.8	11
14	$\rm HP1\hat{I}^3$ regulates H3K36 methylation and pluripotency in embryonic stem cells. Nucleic Acids Research, 2020, 48, 12660-12674.	14.5	9
15	Coordinated removal of repressive epigenetic modifications during induced reversal of cell identity. EMBO Journal, 2019, 38, e101681.	7.8	8
16	Connecting the DOTs on Cell Identity. Frontiers in Cell and Developmental Biology, 0, 10, .	3.7	8
17	Defining the Mechanism of Transcription Factor-Induced Epigenetic Reprogramming Blood, 2009, 114, SCI-41-SCI-41.	1.4	0