Domingos M Henrique

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1853904/publications.pdf

Version: 2024-02-01

50 papers 7,456 citations

126708 33 h-index 51 g-index

54 all docs 54 docs citations

54 times ranked 7008 citing authors

#	Article	IF	CITATIONS
1	Expression of a Delta homologue in prospective neurons in the chick. Nature, 1995, 375, 787-790.	13.7	990
2	Avian hairy Gene Expression Identifies a Molecular Clock Linked to Vertebrate Segmentation and Somitogenesis. Cell, 1997, 91, 639-648.	13.5	880
3	Primary neurogenesis in Xenopus embryos regulated by a homologue of the Drosophila neurogenic gene Delta. Nature, 1995, 375, 761-766.	13.7	645
4	Dosage-sensitive requirement for mouse Dll4 in artery development. Genes and Development, 2004, 18, 2474-2478.	2.7	486
5	Maintenance of neuroepithelial progenitor cells by Delta–Notch signalling in the embryonic chick retina. Current Biology, 1997, 7, 661-670.	1.8	394
6	Differential Effects of Notch Ligands Delta-1 and Jagged-1 in Human Lymphoid Differentiation. Journal of Experimental Medicine, 2001, 194, 991-1002.	4.2	316
7	A Chick Homologue ofSerrateand Its Relationship withNotchandDeltaHomologues during Central Neurogenesis. Developmental Biology, 1996, 174, 233-247.	0.9	308
8	Neuromesodermal progenitors and the making of the spinal cord. Development (Cambridge), 2015, 142, 2864-2875.	1.2	282
9	Axial, a zebrafish gene expressed along the developing body axis, shows altered expression in cyclops mutant embryos Genes and Development, 1993, 7, 1436-1446.	2.7	274
10	Expression of Radical fringe in limb-bud ectoderm regulates apical ectodermal ridge formation. Nature, 1997, 386, 366-373.	13.7	268
11	MKP3 mediates the cellular response to FGF8 signalling in the vertebrate limb. Nature Cell Biology, 2003, 5, 513-519.	4.6	247
12	Neural Differentiation of Embryonic Stem Cells In Vitro: A Road Map to Neurogenesis in the Embryo. PLoS ONE, 2009, 4, e6286.	1.1	201
13	Human Ligands of the Notch Receptor. American Journal of Pathology, 1999, 154, 785-794.	1.9	170
14	Mouse embryonic stem cell expansion in a microcarrier-based stirred culture system. Journal of Biotechnology, 2007, 132, 227-236.	1.9	145
15	Mechanisms of Notch signaling: a simple logic deployed in time and space. Development (Cambridge), 2019, 146, .	1.2	140
16	Generation of sensory hair cells by genetic programming with a combination of transcription factors. Development (Cambridge), 2015, 142, 1948-1959.	1.2	129
17	Stochastic NANOG fluctuations allow mouse embryonic stem cells to explore pluripotency. Development (Cambridge), 2014, 141, 2770-2779.	1.2	120
18	Expansion of mouse embryonic stem cells on microcarriers. Biotechnology and Bioengineering, 2007, 96, 1211-1221.	1.7	119

#	Article	IF	Citations
19	FGF signaling is required for determination of otic neuroblasts in the chick embryo. Developmental Biology, 2004, 267, 119-134.	0.9	111
20	Cell polarity: the ups and downs of the Par6/aPKC complex. Current Opinion in Genetics and Development, 2003, 13, 341-350.	1.5	103
21	A novel hes5/hes6 circuitry of negative regulation controls Notch activity during neurogenesis. Developmental Biology, 2005, 281, 318-333.	0.9	103
22	Uncoupling segmentation and somitogenesis in the chick presomitic mesoderm., 1998, 23, 77-85.		87
23	PAR3 acts as a molecular organizer to define the apical domain of chick neuroepithelial cells. Journal of Cell Science, 2006, 119, 4293-4304.	1.2	80
24	cash4, a novel achaete-scute homolog induced by Hensen's node during generation of the posterior nervous system Genes and Development, 1997, 11, 603-615.	2.7	69
25	Loss of Notch signalling induced by Dll4 causes arterial calibre reduction by increasing endothelial cell response to angiogenic stimuli. BMC Developmental Biology, 2008, 8, 117.	2.1	65
26	Dll1 and Dll4 function sequentially in the retina and pV2 domain of the spinal cord to regulate neurogenesis and create cell diversity. Developmental Biology, 2009, 328, 54-65.	0.9	63
27	The FunGenES Database: A Genomics Resource for Mouse Embryonic Stem Cell Differentiation. PLoS ONE, 2009, 4, e6804.	1.1	54
28	Generation and Characterization of a Novel Mouse Embryonic Stem Cell Line with a Dynamic Reporter of Nanog Expression. PLoS ONE, 2013, 8, e59928.	1.1	52
29	mDll1 andmDll3 expression in the developing mouse brain: Role in the establishment of the early cortex. Journal of Neuroscience Research, 2001, 64, 590-598.	1.3	48
30	Dynamics of Notch Pathway Expression during Mouse Testis Post-Natal Development and along the Spermatogenic Cycle. PLoS ONE, 2013, 8, e72767.	1.1	47
31	Bilirubin as a determinant for altered neurogenesis, neuritogenesis, and synaptogenesis. Developmental Neurobiology, 2009, 69, 568-582.	1.5	45
32	A novel reporter of notch signalling indicates regulated and random notch activation during vertebrate neurogenesis. BMC Biology, 2011, 9, 58.	1.7	39
33	In Vivo Notch Signaling Blockade Induces Abnormal Spermatogenesis in the Mouse. PLoS ONE, 2014, 9, e113365.	1.1	34
34	Expression of hes6, a new member of the Hairy/Enhancer-of-split family, in mouse development. Mechanisms of Development, 2000, 95, 275-278.	1.7	33
35	The zebrafish Hairy/Enhancer-of-split-related gene her6 is segmentally expressed during the early development of hindbrain and somites. Mechanisms of Development, 2001, 100, 317-321.	1.7	32
36	Context-Dependent Functional Divergence of the Notch Ligands DLL1 and DLL4 In Vivo. PLoS Genetics, 2015, 11, e1005328.	1.5	32

#	Article	IF	Citations
37	Key role played by RhoA in the balance between planar and apico-basal cell divisions in the chick neuroepithelium. Developmental Biology, 2006, 298, 212-224.	0.9	31
38	Two Notch Ligands, Dll1 and Jag1, Are Differently Restricted in Their Range of Action to Control Neurogenesis in the Mammalian Spinal Cord. PLoS ONE, 2010, 5, e15515.	1.1	28
39	Neural commitment of human pluripotent stem cells under defined conditions recapitulates neural development and generates patientâ€specific neural cells. Biotechnology Journal, 2015, 10, 1578-1588.	1.8	28
40	Embryonic expression of three mouse genes with homology to the Drosophila melanogaster prickle gene. Mechanisms of Development, 2002, 119, S77-S81.	1.7	22
41	Heterogeneous lineage marker expression in naive embryonic stem cells is mostly due to spontaneous differentiation. Scientific Reports, 2015, 5, 13339.	1.6	21
42	"Notch-Off": a perspective on the termination of Notch signalling. International Journal of Developmental Biology, 2009, 53, 1379-1384.	0.3	19
43	HES6-1 and HES6-2 Function through Different Mechanisms during Neuronal Differentiation. PLoS ONE, 2010, 5, e15459.	1.1	18
44	Expansion and neural differentiation of embryonic stem cells in adherent and suspension cultures. Biotechnology Letters, 2003, 25, 725-730.	1.1	17
45	Optimization and integration of expansion and neural commitment of mouse embryonic stem cells. Biotechnology and Applied Biochemistry, 2008, 49, 105.	1.4	16
46	Glycogen Synthase Kinase-3 Inhibition Enhances Translation of Pluripotency-Associated Transcription Factors to Contribute to Maintenance of Mouse Embryonic Stem Cell Self-Renewal. PLoS ONE, 2013, 8, e60148.	1.1	16
47	Transcriptome profiling of induced hair cells (iHCs) generated by combined expression of Gfi1, Pou4f3 and Atoh1 during embryonic stem cell differentiation. Genomics Data, 2015, 6, 77-80.	1.3	11
48	Dissecting Transcriptional Heterogeneity in Pluripotency: Single Cell Analysis of Mouse Embryonic Stem Cells. Methods in Molecular Biology, 2016, 1516, 101-119.	0.4	4
49	Imaging Pluripotency: Time-Lapse Analysis of Mouse Embryonic Stem Cells. Methods in Molecular Biology, 2015, 1341, 87-100.	0.4	1
50	Different levels of epidermal growth factor signaling modifies the differentiation of specific cell types in mouse postnatal retina. Archives of Biological Sciences, 2019, 71, 711-719.	0.2	0