David R Nelson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1853612/publications.pdf

Version: 2024-02-01

26 papers 3,176 citations

567281 15 h-index 9-index

27 all docs

27 docs citations

times ranked

27

4837 citing authors

#	Article	IF	CITATIONS
1	The <i>Chlamydomonas</i> Genome Reveals the Evolution of Key Animal and Plant Functions. Science, 2007, 318, 245-250.	12.6	2,354
2	Mapping of HKT1;5 Gene in Barley Using GWAS Approach and Its Implication in Salt Tolerance Mechanism. Frontiers in Plant Science, 2018, 9, 156.	3 . 6	95
3	Whole-Genome Resequencing Reveals Extensive Natural Variation in the Model Green Alga <i>Chlamydomonas reinhardtii</i> . Plant Cell, 2015, 27, 2353-2369.	6.6	92
4	Safranal induces DNA double-strand breakage and ER-stress-mediated cell death in hepatocellular carcinoma cells. Scientific Reports, 2018, 8, 16951.	3.3	82
5	Advances in microalgal research and engineering development. Current Opinion in Biotechnology, 2019, 59, 157-164.	6.6	73
6	Algal Cell Factories: Approaches, Applications, and Potentials. Marine Drugs, 2016, 14, 225.	4.6	65
7	An integrative Raman microscopy-based workflow for rapid in situ analysis of microalgal lipid bodies. Biotechnology for Biofuels, 2015, 8, 164.	6.2	58
8	Large-scale genome sequencing reveals the driving forces of viruses in microalgal evolution. Cell Host and Microbe, 2021, 29, 250-266.e8.	11.0	48
9	The genome of pest Rhynchophorus ferrugineus reveals gene families important at the plant-beetle interface. Communications Biology, 2020, 3, 323.	4.4	44
10	Intracellular spectral recompositioning of light enhances algal photosynthetic efficiency. Science Advances, 2017, 3, e1603096.	10.3	42
11	Prospects for the Study and Improvement of Abiotic Stress Tolerance in Date Palms in the Post-genomics Era. Frontiers in Plant Science, 2020, 11, 293.	3.6	34
12	Molecular Mechanisms behind Safranal's Toxicity to HepG2 Cells from Dual Omics. Antioxidants, 2022, 11, 1125.	5.1	31
13	Microalgal Metabolic Network Model Refinement through High-Throughput Functional Metabolic Profiling. Frontiers in Bioengineering and Biotechnology, 2014, 2, 68.	4.1	29
14	Combined artificial high-silicate medium and LED illumination promote carotenoid accumulation in the marine diatom Phaeodactylum tricornutum. Microbial Cell Factories, 2019, 18, 209.	4.0	27
15	Potential for Heightened Sulfur-Metabolic Capacity in Coastal Subtropical Microalgae. IScience, 2019, 11, 450-465.	4.1	23
16	A high-quality genome assembly and annotation of the gray mangrove, <i>Avicennia marina</i> Genes, Genomes, Genetics, 2021, 11, .	1.8	16
17	The genome and phenome of the green alga Chloroidium sp. UTEX 3007 reveal adaptive traits for desert acclimatization. ELife, 2017, 6, .	6.0	16
18	Systems level analysis of the Chlamydomonas reinhardtii metabolic network reveals variability in evolutionary co-conservation. Molecular BioSystems, 2016, 12, 2394-2407.	2.9	12

#	Article	IF	CITATIONS
19	Positive correlation between wood \hat{l}' sup>15 $<$ sup>N and stream nitrate concentrations in two temperate deciduous forests. Environmental Research Communications, 2020, 2, 025003.	2.3	8
20	Alternative glycosylation controls endoplasmic reticulum dynamics and tubular extension in mammalian cells. Science Advances, $2021, 7, .$	10.3	8
21	GPCR Genes as Activators of Surface Colonization Pathways in a Model Marine Diatom. IScience, 2020, 23, 101424.	4.1	7
22	Toward Applications of Genomics and Metabolic Modeling to Improve Algal Biomass Productivity. Biofuel and Biorefinery Technologies, 2015, , 173-189.	0.3	5
23	Heterococcus sp. DN1 draft genome: focus on cold tolerance and lipid production. Microbiome Science and Medicine, 2013, 1, .	0.3	3
24	Single-Cell Characterization of Microalgal Lipid Contents with Confocal Raman Microscopy. Series in Bioengineering, 2016, , 363-382.	0.6	3
25	Protocol to generate and characterize biofouling transformants of a model marine diatom. STAR Protocols, 2021, 2, 100716.	1.2	0
26	High-Throughput Metabolic Profiling for Model Refinements of Microalgae. Journal of Visualized Experiments, 2021, , .	0.3	0