
Pamela A Banta Lavenex

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1853490/publications.pdf Version: 2024-02-01

PAMELA & RANTA LAVENEY

#	Article	IF	CITATIONS
1	Le développement de la mémoire spatiale chez l'enfant entre 2 et 9Âans. Enfance, 2021, Nº 5, 19-35.	0.1	0
2	Resting‣tate EEG Microstates Parallel Ageâ€Related Differences in Allocentric Spatial Working Memory Performance. Brain Topography, 2021, 34, 442-460.	0.8	17
3	A Critical Review of Spatial Abilities in Down and Williams Syndromes: Not All Space Is Created Equal. Frontiers in Psychiatry, 2021, 12, 669320.	1.3	5
4	Life and Death of Immature Neurons in the Juvenile and Adult Primate Amygdala. International Journal of Molecular Sciences, 2021, 22, 6691.	1.8	19
5	Age-Related Differences in Resting-State EEG and Allocentric Spatial Working Memory Performance. Frontiers in Aging Neuroscience, 2021, 13, 704362.	1.7	14
6	Path Integration and Cognitive Mapping Capacities in Down and Williams Syndromes. Frontiers in Psychology, 2020, 11, 571394.	1.1	4
7	Postnatal development of the entorhinal cortex: A stereological study in macaque monkeys. Journal of Comparative Neurology, 2020, 528, 2308-2332.	0.9	6
8	Children five-to-nine years old can use path integration to build a cognitive map without vision. Cognitive Psychology, 2020, 121, 101307.	0.9	8
9	Low-Resolution Place and Response Learning Capacities in Down Syndrome. Frontiers in Psychology, 2018, 9, 2049.	1.1	9
10	Spatial-Numerical Associations Enhance the Short-Term Memorization of Digit Locations. Frontiers in Psychology, 2018, 9, 636.	1.1	2
11	Stereological analysis of the rhesus monkey entorhinal cortex. Journal of Comparative Neurology, 2018, 526, 2115-2132.	0.9	10
12	Working memory decline in normal aging: Is it really worse in space than in color?. Learning and Motivation, 2017, 57, 48-60.	0.6	20
13	Functional organization of the medial temporal lobe memory system following neonatal hippocampal lesion in rhesus monkeys. Brain Structure and Function, 2017, 222, 3899-3914.	1.2	6
14	Working memory decline in normal aging: Memory load and representational demands affect performance. Learning and Motivation, 2017, 60, 10-22.	0.6	23
15	<scp>D</scp> issociation of spatial memory systems in <scp>W</scp> illiams syndrome. Hippocampus, 2017, 27, 1192-1203.	0.9	12
16	The "when―and the "where―of singleâ€ŧrial allocentric spatial memory performance in young children: Insights into the development of episodic memory. Developmental Psychobiology, 2017, 59, 185-196.	0.9	23
17	No association between ApoE polymorphism and febrile seizures. Neurological Sciences, 2016, 37, 31-36.	0.9	2
18	Allocentric spatial learning and memory deficits in Down syndrome. Frontiers in Psychology, 2015, 6, 62.	1.1	36

Pamela A Banta Lavenex

#	Article	IF	CITATIONS
19	Human short-term spatial memory: Precision predicts capacity. Cognitive Psychology, 2015, 77, 1-19.	0.9	20
20	Improvement of allocentric spatial memory resolution in children from 2 to 4 years of age. International Journal of Behavioral Development, 2015, 39, 318-331.	1.3	20
21	The human hippocampus beyond the cognitive map: evidence from a densely amnesic patient. Frontiers in Human Neuroscience, 2014, 8, 711.	1.0	32
22	What Animals Can Teach Clinicians about the Hippocampus. Frontiers of Neurology and Neuroscience, 2014, 34, 36-50.	3.0	3
23	Building hippocampal circuits to learn and remember: Insights into the development of human memory. Behavioural Brain Research, 2013, 254, 8-21.	1.2	250
24	Development of allocentric spatial memory abilities in children from 18 months to 5 years of age. Cognitive Psychology, 2013, 66, 1-29.	0.9	134
25	Developmental regulation of expression of schizophrenia susceptibility genes in the primate hippocampal formation. Translational Psychiatry, 2012, 2, e173-e173.	2.4	11
26	Postnatal development of the amygdala: A stereological study in rats. Journal of Comparative Neurology, 2012, 520, 3745-3763.	0.9	50
27	miRNA Regulation of Gene Expression: A Predictive Bioinformatics Analysis in the Postnatally Developing Monkey Hippocampus. PLoS ONE, 2012, 7, e43435.	1.1	13
28	Postnatal development of the amygdala: A stereological study in macaque monkeys. Journal of Comparative Neurology, 2012, 520, 1965-1984.	0.9	63
29	As the world turns: Short-term human spatial memory in egocentric and allocentric coordinates. Behavioural Brain Research, 2011, 219, 132-141.	1.2	18
30	Developmental regulation of gene expression and astrocytic processes may explain selective hippocampal vulnerability. Hippocampus, 2011, 21, 142-149.	0.9	29
31	Postnatal development of the hippocampal formation: A stereological study in macaque monkeys. Journal of Comparative Neurology, 2011, 519, 1051-1070.	0.9	87
32	Stereological analysis of the rat and monkey amygdala. Journal of Comparative Neurology, 2011, 519, 3218-3239.	0.9	110
33	Quantitative analysis of postnatal neurogenesis and neuron number in the macaque monkey dentate gyrus. European Journal of Neuroscience, 2010, 31, 273-285.	1.2	111
34	Spatial relational learning and memory abilities do not differ between men and women in a real-world, open-field environment. Behavioural Brain Research, 2010, 207, 125-137.	1.2	30
35	Spatial memory and the monkey hippocampus: Not all space is created equal. Hippocampus, 2009, 19, 8-19.	0.9	69
36	Postmortem changes in the neuroanatomical characteristics of the primate brain: Hippocampal formation. Journal of Comparative Neurology, 2009, 512, 27-51.	0.9	77

Pamela A Banta Lavenex

#	Article	IF	CITATIONS
37	Postnatal Development of the Primate Hippocampal Formation. Developmental Neuroscience, 2007, 29, 179-192.	1.0	80
38	Spatial relational learning persists following neonatal hippocampal lesions in macaque monkeys. Nature Neuroscience, 2007, 10, 234-239.	7.1	45
39	Hippocampal Lesion Prevents Spatial Relational Learning in Adult Macaque Monkeys. Journal of Neuroscience, 2006, 26, 4546-4558.	1.7	125
40	Spatial relational memory in 9-month-old macaque monkeys. Learning and Memory, 2006, 13, 84-96.	0.5	18
41	Nonphosphorylated high-molecular-weight neurofilament expression suggests early maturation of the monkey subiculum. Hippocampus, 2004, 14, 797-801.	0.9	15
42	Comparative studies of postnatal neurogenesis and learning: a critical review. Avian Biology Research, 2001, 12, 103-125.	1.3	12
43	Lesions in the budgerigar vocal control nucleus NLc affect production, but not memory, of English words and natural vocalizations. , 2000, 421, 437-460.		22
44	Vocal production mechanisms in the budgerigar (Melopsittacus undulatus): The presence and implications of amplitude modulation. Journal of the Acoustical Society of America, 1999, 106, 491-505.	0.5	30
45	Measurement of grey parrot (Psittacus erithacus) trachea via magnetic resonance imaging, dissection, and electron beam computed tomography. Journal of Morphology, 1998, 238, 81-91.	0.6	8
46	Allospecific vocal learning by Grey parrots (Psittacus erithacus): A failure of videotaped instruction under certain conditions. Behavioural Processes, 1998, 42, 139-158.	0.5	41
47	Size-dependent responses to dehydration in the terrestrial slug,Limax maximus L.: Locomotor activity and huddling behavior. The Journal of Experimental Zoology, 1990, 253, 229-234.	1.4	6
48	Water-Orientation Behavior in the Terrestrial Gastropod <i>Limax maximus:</i> The Effects of Dehydration and Arginine Vasotocin. Physiological Zoology, 1990, 63, 683-696.	1.5	7
49	Ingestion of substrate fluid by Helix aspersa muller: A feeding response induced by low molecular weight chemical stimuli. Comparative Biochemistry and Physiology A, Comparative Physiology, 1989, 94, 73-74.	0.7	3