Nathan J B Kraft

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1853253/publications.pdf Version: 2024-02-01

NATHAN I R KDAFT

#	Article	IF	CITATIONS
1	Functional traits predict species responses to environmental variation in a California grassland annual plant community. Journal of Ecology, 2022, 110, 833-844.	4.0	15
2	Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation. Nature Ecology and Evolution, 2022, 6, 36-50.	7.8	89
3	The hidden value of trees: Quantifying the ecosystem services of tree lineages and their major threats across the contiguous US. , 2022, 1, e0000010.		14
4	A review of the heterogeneous landscape of biodiversity databases: Opportunities and challenges for a synthesized biodiversity knowledge base. Global Ecology and Biogeography, 2022, 31, 1242-1260.	5.8	29
5	Detecting and interpreting higherâ€order interactions in ecological communities. Ecology Letters, 2022, 25, 1604-1617.	6.4	20
6	High exposure of global tree diversity to human pressure. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	18
7	Soil Microbes Generate Stronger Fitness Differences than Stabilization among California Annual Plants. American Naturalist, 2021, 197, E30-E39.	2.1	11
8	The CALeDNA program: Citizen scientists and researchers inventory California's biodiversity. California Agriculture, 2021, 75, 20-32.	0.8	20
9	Functional biogeography of Neotropical moist forests: Trait–climate relationships and assembly patterns of tree communities. Clobal Ecology and Biogeography, 2021, 30, 1430-1446.	5.8	18
10	Predicting intraspecific trait variation among California's grasses. Journal of Ecology, 2021, 109, 2662-2677.	4.0	14
11	Regularized Regression: A New Tool for Investigating and Predicting Tree Growth. Forests, 2021, 12, 1283.	2.1	2
12	Integrating the underlying structure of stochasticity into community ecology. Ecology, 2020, 101, e02922.	3.2	113
13	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
14	Global gradients in intraspecific variation in vegetative and floral traits are partially associated with climate and species richness. Global Ecology and Biogeography, 2020, 29, 992-1007.	5.8	51
15	Neighborhood effects explain increasing asynchronous seedling survival in a subtropical forest. Ecology, 2019, 100, e02821.	3.2	8
16	Robustness of trait connections across environmental gradients and growth forms. Global Ecology and Biogeography, 2019, 28, 1806-1826.	5.8	56
17	Winning and losing with microbes: how microbially mediated fitness differences influence plant diversity. Ecology Letters, 2019, 22, 1178-1191.	6.4	67
18	<i>Anacapa Toolkit</i> : An environmental DNA toolkit for processing multilocus metabarcode datasets. Methods in Ecology and Evolution, 2019, 10, 1469-1475.	5.2	88

#	Article	IF	CITATIONS
19	Temperature shapes opposing latitudinal gradients of plant taxonomic and phylogenetic β diversity. Ecology Letters, 2019, 22, 1126-1135.	6.4	54
20	Neither species geographic range size, climatic envelope, nor intraspecific leaf trait variability capture habitat specialization in a hyperdiverse Amazonian forest. Biotropica, 2019, 51, 304-310.	1.6	3
21	Drier tropical forests are susceptible to functional changes in response to a longâ€ŧerm drought. Ecology Letters, 2019, 22, 855-865.	6.4	75
22	The relationship of woody plant size and leaf nutrient content to largeâ€scale productivity for forests across the Americas. Journal of Ecology, 2019, 107, 2278-2290.	4.0	18
23	The commonness of rarity: Global and future distribution of rarity across land plants. Science Advances, 2019, 5, eaaz0414.	10.3	194
24	Disentangling the functional trait correlates of spatial aggregation in tropical forest trees. Ecology, 2019, 100, e02591.	3.2	22
25	Spatial patterns and climate relationships of major plant traits in the New World differ between woody and herbaceous species. Journal of Biogeography, 2018, 45, 895-916.	3.0	92
26	The <scp>bien r</scp> package: A tool to access the Botanical Information and Ecology Network (BIEN) database. Methods in Ecology and Evolution, 2018, 9, 373-379.	5.2	241
27	Plant Functional Diversity and the Biogeography of Biomes in North and South America. Frontiers in Ecology and Evolution, 2018, 6, .	2.2	38
28	A competition–defence tradeâ€off both promotes and weakens coexistence in an annual plant community. Journal of Ecology, 2018, 106, 1806-1818.	4.0	47
29	Topography and neighborhood crowding can interact to shape species growth and distribution in a diverse Amazonian forest. Ecology, 2018, 99, 2272-2283.	3.2	72
30	Divergent drivers of leaf trait variation within species, among species, and among functional groups. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5480-5485.	7.1	94
31	Contrasting patterns of taxonomic, phylogenetic and functional variation along a Costa Rican altitudinal gradient in the plant family Melastomataceae. Journal of Tropical Ecology, 2018, 34, 204-208.	1.1	4
32	ranacapa: An R package and Shiny web app to explore environmental DNA data with exploratory statistics and interactive visualizations. F1000Research, 2018, 7, 1734.	1.6	132
33	From Ecological Strategies to Trait Ecology: The Arising Researcher. Bulletin of the Ecological Society of America, 2017, 98, 32-33.	0.2	0
34	Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area. Ecology Letters, 2017, 20, 539-553.	6.4	348
35	Intransitivity is infrequent and fails to promote annual plant coexistence without pairwise niche differences. Ecology, 2017, 98, 1193-1200.	3.2	93
36	A structural approach for understanding multispecies coexistence. Ecological Monographs, 2017, 87, 470-486.	5.4	208

#	Article	IF	CITATIONS
37	Functional Rarity: The Ecology of Outliers. Trends in Ecology and Evolution, 2017, 32, 356-367.	8.7	258
38	A Common Toolbox to Understand, Monitor or Manage Rarity? A Response to Carmona et al Trends in Ecology and Evolution, 2017, 32, 891-893.	8.7	4
39	Spatially Explicit Metrics of Species Diversity, Functional Diversity, and Phylogenetic Diversity: Insights into Plant Community Assembly Processes. Annual Review of Ecology, Evolution, and Systematics, 2017, 48, 329-351.	8.3	51
40	Mapping local and global variability in plant trait distributions. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10937-E10946.	7.1	159
41	Intraspecific leaf trait variability along a boreal-to-tropical community diversity gradient. PLoS ONE, 2017, 12, e0172495.	2.5	20
42	Patterns and drivers of plant functional group dominance across the Western Hemisphere: a macroecological re-assessment based on a massive botanical dataset. Botanical Journal of the Linnean Society, 2016, 180, 141-160.	1.6	59
43	<i>Plantâ€Oâ€Matic</i> : a dynamic and mobile guide to all plants of the Americas. Methods in Ecology and Evolution, 2016, 7, 960-965.	5.2	18
44	Megafauna extinction, tree species range reduction, and carbon storage in Amazonian forests. Ecography, 2016, 39, 194-203.	4.5	86
45	Functional trait differences influence neighbourhood interactions in a hyperdiverse Amazonian forest. Ecology Letters, 2016, 19, 1062-1070.	6.4	58
46	Stochastic dilution effects weaken deterministic effects of nicheâ€based processes in species rich forests. Ecology, 2016, 97, 347-360.	3.2	42
47	Commercial Plant Production and Consumption Still Follow the Latitudinal Gradient in Species Diversity despite Economic Globalization. PLoS ONE, 2016, 11, e0163002.	2.5	6
48	A global metaâ€analysis of the relative extent of intraspecific trait variation in plant communities. Ecology Letters, 2015, 18, 1406-1419.	6.4	768
49	Seed plant phylogenetic diversity and species richness in conservation planning within a global biodiversity hotspot in eastern Asia. Conservation Biology, 2015, 29, 1552-1562.	4.7	35
50	A phylogenetically informed delineation of floristic regions within a biodiversity hotspot in Yunnan, China. Scientific Reports, 2015, 5, 9396.	3.3	46
51	Plant functional traits and the multidimensional nature of species coexistence. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 797-802.	7.1	701
52	Linking environmental filtering and disequilibrium to biogeography with a community climate framework. Ecology, 2015, 96, 972-985.	3.2	70
53	Shifts in trait means and variances in North American tree assemblages: species richness patterns are loosely related to the functional space. Ecography, 2015, 38, 649-658.	4.5	89
54	Community assembly, coexistence and the environmental filtering metaphor. Functional Ecology, 2015, 29, 592-599.	3.6	1,126

#	Article	IF	CITATIONS
55	Assembly of Plant Communities. , 2015, , 1-18.		0
56	Functional trait space and the latitudinal diversity gradient. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13745-13750.	7.1	319
57	Environmental factors predict community functional composition in <scp>A</scp> mazonian forests. Journal of Ecology, 2014, 102, 145-155.	4.0	132
58	Plant traits predict inter―and intraspecific variation in susceptibility to herbivory in a hyperdiverse Neotropical rain forest tree community. Journal of Ecology, 2014, 102, 939-952.	4.0	63
59	Phylogenetic relatedness and the determinants of competitive outcomes. Ecology Letters, 2014, 17, 836-844.	6.4	288
60	Assembly of Plant Communities. , 2014, , 67-88.		67
61	Assessing the relative importance of neutral stochasticity in ecological communities. Oikos, 2014, 123, 1420-1430.	2.7	310
62	Functional trait differences and the outcome of community assembly: an experimental test with vernal pool annual plants. Oikos, 2014, 123, 1391-1399.	2.7	105
63	Phylogenetic conservatism in plant phenology. Journal of Ecology, 2013, 101, 1520-1530.	4.0	182
64	Traitâ€based tests of coexistence mechanisms. Ecology Letters, 2013, 16, 1294-1306.	6.4	422
65	Stochastic and deterministic drivers of spatial and temporal turnover in breeding bird communities. Global Ecology and Biogeography, 2013, 22, 202-212.	5.8	121
66	Characterizing scaleâ€dependent community assembly using the functionalâ€diversity–area relationship. Ecology, 2013, 94, 2392-2402.	3.2	63
67	FORUM: Sustaining ecosystem functions in a changing world: a call for an integrated approach. Journal of Applied Ecology, 2013, 50, 1124-1130.	4.0	37
68	Habitat area and climate stability determine geographical variation in plant species range sizes. Ecology Letters, 2013, 16, 1446-1454.	6.4	130
69	Flowering date of taxonomic families predicts phenological sensitivity to temperature: Implications for forecasting the effects of climate change on unstudied taxa. American Journal of Botany, 2013, 100, 1381-1397.	1.7	54
70	The Assembly of Plant Communities. , 2013, , 1-19.		3
71	Individual Cell Based Traits Obtained by Scanning Flow-Cytometry Show Selection by Biotic and Abiotic Environmental Factors during a Phytoplankton Spring Bloom. PLoS ONE, 2013, 8, e71677.	2.5	48
72	Response to Comments on "Disentangling the Drivers of β Diversity Along Latitudinal and Elevational Gradients― Science, 2012, 335, 1573-1573.	12.6	8

#	Article	IF	CITATIONS
73	Incompletely resolved phylogenetic trees inflate estimates of phylogenetic conservatism. Ecology, 2012, 93, 242-247.	3.2	75
74	Sensitivity of Spring Phenology to Warming Across Temporal and Spatial Climate Gradients in Two Independent Databases. Ecosystems, 2012, 15, 1283-1294.	3.4	107
75	Warming experiments underpredict plant phenological responses to climate change. Nature, 2012, 485, 494-497.	27.8	772
76	Different evolutionary histories underlie congruent species richness gradients of birds and mammals. Journal of Biogeography, 2012, 39, 825-841.	3.0	84
77	INTRAGUILD PREDATION DRIVES EVOLUTIONARY NICHE SHIFT IN THREESPINE STICKLEBACK. Evolution; International Journal of Organic Evolution, 2012, 66, 1819-1832.	2.3	68
78	The biogeography and filtering of woody plant functional diversity in North and South America. Global Ecology and Biogeography, 2012, 21, 798-808.	5.8	235
79	Using null models to disentangle variation in community dissimilarity from variation in α-diversity. Ecosphere, 2011, 2, art24.	2.2	698
80	Navigating the multiple meanings of Î ² diversity: a roadmap for the practicing ecologist. Ecology Letters, 2011, 14, 19-28.	6.4	1,899
81	Predicting phenology by integrating ecology, evolution and climate science. Global Change Biology, 2011, 17, 3633-3643.	9.5	314
82	Sensitivity of leaf size and shape to climate: global patterns and paleoclimatic applications. New Phytologist, 2011, 190, 724-739.	7.3	445
83	Disentangling the Drivers of \hat{I}^2 Diversity Along Latitudinal and Elevational Gradients. Science, 2011, 333, 1755-1758.	12.6	617
84	Contrasting trait responses in plant communities to experimental and geographic variation in precipitation. New Phytologist, 2010, 188, 565-575.	7.3	127
85	The relationship between wood density and mortality in a global tropical forest data set. New Phytologist, 2010, 188, 1124-1136.	7.3	164
86	Range size, taxon age and hotspots of neoendemism in the California flora. Diversity and Distributions, 2010, 16, 403-413.	4.1	91
87	The geography of climate change: implications for conservation biogeography. Diversity and Distributions, 2010, 16, 476-487.	4.1	490
88	Functional traits and the growth–mortality tradeâ€off in tropical trees. Ecology, 2010, 91, 3664-3674.	3.2	788
89	Phylogeny, niche conservatism and the latitudinal diversity gradient in mammals. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 2131-2138.	2.6	219
90	Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest. Ecological Monographs, 2010, 80, 401-422.	5.4	501

#	Article	IF	CITATIONS
91	Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest. Ecological Monographs, 2010, 80, 100318220649095.	5.4	2
92	Response to Comment on "Functional Traits and Niche-Based Tree Community Assembly in an Amazonian Forest― Science, 2009, 324, 1015-1015.	12.6	11
93	Functional Traits and Niche-Based Tree Community Assembly in an Amazonian Forest. Science, 2008, 322, 580-582.	12.6	949
94	Trait Evolution, Community Assembly, and the Phylogenetic Structure of Ecological Communities. American Naturalist, 2007, 170, 271-283.	2.1	625
95	Trait Evolution, Community Assembly, and the Phylogenetic Structure of Ecological Communities. American Naturalist, 2007, 170, 271.	2.1	39