Marivalda M Pereira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1853201/publications.pdf

Version: 2024-02-01

99 papers 3,673 citations

30 h-index 59 g-index

101 all docs

101 docs citations

times ranked

101

4060 citing authors

#	Article	IF	Citations
1	The effect of ionic products from bioactive glass dissolution on osteoblast proliferation and collagen production. Biomaterials, 2004, 25, 2941-2948.	11.4	468
2	Calcium phosphate formation on sol-gel-derived bioactive glassesin vitro. Journal of Biomedical Materials Research Part B, 1994, 28, 693-698.	3.1	329
3	Effect of Texture on the Rate of Hydroxyapatite Formation on Gel-Silica Surface. Journal of the American Ceramic Society, 1995, 78, 2463-2468.	3.8	230
4	Properties and biocompatibility of chitosan films modified by blending with PVA and chemically crosslinked. Journal of Materials Science: Materials in Medicine, 2009, 20, 553-561.	3.6	184
5	Mechanisms of hydroxyapatite formation on porous gel-silica substrates. Journal of Sol-Gel Science and Technology, 1996, 7, 59-68.	2.4	182
6	Thermogelling chitosan–collagen–bioactive glass nanoparticle hybrids as potential injectable systems for tissue engineering. Materials Science and Engineering C, 2016, 58, 1207-1216.	7.3	147
7	Synthesis and characterization of biodegradable polyurethane films based on HDI with hydrolyzable crosslinked bonds and a homogeneous structure for biomedical applications. Materials Science and Engineering C, 2015, 52, 22-30.	7.3	145
8	Bioactive glass and hybrid scaffolds prepared by sol–gel method for bone tissue engineering. Advances in Applied Ceramics, 2005, 104, 35-42.	1.1	115
9	Preparation of bioactive glass-polyvinyl alcohol hybrid foams by the sol-gel method. Journal of Materials Science: Materials in Medicine, 2005, 16, 1045-1050.	3.6	93
10	Synthesis, characterization and cytocompatibility of spherical bioactive glass nanoparticles for potential hard tissue engineering applications. Biomedical Materials (Bristol), 2013, 8, 025011.	3.3	77
11	Effect of severe plastic deformation on the biocompatibility and corrosion rate of pure magnesium. Journal of Materials Science, 2017, 52, 5992-6003.	3.7	77
12	FTIR and UVâ€'vis study of chemically engineered biomaterial surfaces for protein immobilization. Spectroscopy, 2002, 16, 351-360.	0.8	72
13	Sol-gel synthesis of bioactive glass scaffolds for tissue engineering: Effect of surfactant type and concentration. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2005, 75B, 451-456.	3.4	67
14	Chitosan and carboxymethyl-chitosan capping ligands: Effects on the nucleation and growth of hydroxyapatite nanoparticles for producing biocomposite membranes. Materials Science and Engineering C, 2016, 59, 265-277.	7.3	62
15	Nanostructured chitosan/gelatin/bioactive glass in situ forming hydrogel composites as a potential injectable matrix for bone tissue engineering. Materials Chemistry and Physics, 2018, 218, 304-316.	4.0	58
16	Sol–gel derived composite from bioactive glass–polyvinyl alcohol. Journal of Materials Science, 2008, 43, 494-502.	3.7	57
17	Effects of extracellular calcium concentration on the glutamate release by bioactive glass (BG60S) preincubated osteoblasts. Biomedical Materials (Bristol), 2009, 4, 045011.	3.3	54
18	Primary osteoblast cell response to sol-gel derived bioactive glass foams. Journal of Materials Science: Materials in Medicine, 2005, 16, 851-856.	3.6	52

#	Article	IF	CITATIONS
19	Effect of a Three-Dimensional Chitosan Porous Scaffold on the Differentiation of Mesenchymal Stem Cells into Chondrocytes. Cells Tissues Organs, 2010, 191, 119-128.	2.3	52
20	Injectable chitosan/gelatin/bioactive glass nanocomposite hydrogels for potential bone regeneration: In vitro and in vivo analyses. International Journal of Biological Macromolecules, 2019, 132, 811-821.	7.5	52
21	Characterization and induction of cementoblast cell proliferation by bioactive glass nanoparticles. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, 813-821.	2.7	47
22	Sol–gel-derived manganese-releasing bioactive glass as a therapeutic approach for bone tissue engineering. Journal of Materials Science, 2017, 52, 8904-8927.	3.7	44
23	Osteogenic potential of sol–gel bioactive glasses containing manganese. Journal of Materials Science: Materials in Medicine, 2019, 30, 86.	3.6	44
24	Development of biodegradable polyurethane and bioactive glass nanoparticles scaffolds for bone tissue engineering applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2012, 100B, 1387-1396.	3.4	43
25	Effects of manganese incorporation on the morphology, structure and cytotoxicity of spherical bioactive glass nanoparticles. Journal of Colloid and Interface Science, 2019, 547, 382-392.	9.4	43
26	Preparation of hybrid biomaterials for bone tissue engineering. Materials Research, 2007, 10, 21-26.	1.3	41
27	<i>In vitro</i> and <i>in vivo</i> osteogenic potential of bioactive glass–PVA hybrid scaffolds colonized by mesenchymal stem cells. Biomedical Materials (Bristol), 2012, 7, 015004.	3.3	37
28	Morphological, mechanical, and biocompatibility characterization of macroporous alumina scaffolds coated with calcium phosphate/PVA. Journal of Materials Science, 2008, 43, 510-524.	3.7	35
29	Evaluation of in vitro and in vivo biocompatibility and structure of cobalt-releasing sol-gel bioactive glass. Ceramics International, 2018, 44, 20337-20347.	4.8	35
30	Structure and Dosimetric Analysis of Biodegradable Glasses for Prostate Cancer Treatment. Artificial Organs, 2003, 27, 432-436.	1.9	32
31	Engineered Hybrid Scaffolds of Poly(vinyl alcohol)/Bioactive Glass for Potential Bone Engineering Applications: Synthesis, Characterization, Cytocompatibility, and Degradation. Journal of Nanomaterials, 2012, 2012, 1-16.	2.7	32
32	Synthesis and characterization of chitosan-polyvinyl alcohol-bioactive glass hybrid membranes. Biomatter, 2011, 1, 114-119.	2.6	31
33	Effect of biphasic calcium phosphate on human macrophage functionsin vitro. Journal of Biomedical Materials Research Part B, 2003, 65A, 475-481.	3.1	30
34	Therapeutic cobalt ion incorporated in poly(vinyl alcohol)/bioactive glass scaffolds for tissue engineering. Journal of Materials Science, 2020, 55, 8710-8727.	3.7	27
35	Effect of polyvinyl alcohol content and after synthesis neutralization on structure, mechanical properties and cytotoxicity of sol-gel derived hybrid foams. Materials Research, 2009, 12, 239-244.	1.3	26
36	Structural analysis of hydroxyapatite/bioactive glass composite coatings obtained by plasma spray processing. Journal of Non-Crystalline Solids, 1999, 247, 64-68.	3.1	25

#	Article	IF	CITATIONS
37	Analysis of bioactive glasses obtained by sol-gel processing for radioactive implants. Materials Research, 2003, 6, 123-127.	1.3	25
38	In vivo evaluation of bioactive glass foams associated with platelet-rich plasma in bone defects. Journal of Tissue Engineering and Regenerative Medicine, 2008, 2, 221-227.	2.7	25
39	The influence of cobalt incorporation and cobalt precursor selection on the structure and bioactivity of sol–gel-derived bioactive glass. Journal of Sol-Gel Science and Technology, 2018, 88, 309-321.	2.4	23
40	Apatite formation on poly(2-hydroxyethyl methacrylate)-silica hybrids prepared by sol-gel process. Journal of Materials Science: Materials in Medicine, 2005, 16, 927-932.	3.6	22
41	Calcium phosphate formation on alkali-treated titanium alloy and stainless steel. Materials Research, 2004, 7, 299-303.	1.3	21
42	Cobaltâ€containing bioactive glass mimics vascular endothelial growth factor A and hypoxia inducible factor 1 function. Journal of Biomedical Materials Research - Part A, 2021, 109, 1051-1064.	4.0	21
43	Synthesis, neutralization and blocking procedures of organic/inorganic hybrid scaffolds for bone tissue engineering applications. Journal of Materials Science: Materials in Medicine, 2009, 20, 529-535.	3.6	20
44	Synergistic effect between bioactive glass foam and a perfusion bioreactor on osteogenic differentiation of human adipose stem cells. Journal of Biomedical Materials Research - Part A, 2014, 102, 818-827.	4.0	20
45	3D-macroporous hybrid scaffolds for tissue engineering: Network design and mathematical modeling of the degradation kinetics. Materials Science and Engineering C, 2012, 32, 404-415.	7.3	18
46	Preparation and biocompatibility of poly (methyl methacrylate) reinforced with bioactive particles. Materials Research, 2003, 6, 311-315.	1.3	17
47	Orthopedic implant of a polyhydroxybutyrate (PHB) and hydroxyapatite composite in cats. Journal of Feline Medicine and Surgery, 2011, 13, 546-552.	1.6	17
48	Synthesis and characterization of bioactive glass particles using an ultrasound-assisted sol–gel process: Engineering the morphology and size of sonogels via a poly(ethylene glycol) dispersing agent. Materials Letters, 2014, 133, 44-48.	2.6	17
49	Acid character control of bioactive glass/polyvinyl alcohol hybrid foams produced by sol–gel. Journal of Sol-Gel Science and Technology, 2008, 47, 335-346.	2.4	16
50	Freeze-cast composite scaffolds prepared from sol-gel derived 58S bioactive glass and polycaprolactone. Ceramics International, 2019, 45, 9891-9900.	4.8	16
51	Novel 3D composites with highly flexible behavior based on chitosan and bioactive glass for biomedical applications. Materials Chemistry and Physics, 2017, 189, 1-11.	4.0	14
52	Using the Nanostructure of Segmented Polyurethanes as a Template in the Fabrication of Nanocomposites. Macromolecules, 2005, 38, 4058-4060.	4.8	13
53	Dosimetric Analysis and Characterisation of Radioactive Seeds Produced by the Sol-Gel Method. Key Engineering Materials, 2003, 240-242, 579-582.	0.4	12
54	Osteogenic differentiation of bone marrow mesenchymal stem cells of ovariectomized and non-ovariectomized female rats with thyroid dysfunction. Pathology Research and Practice, 2013, 209, 44-51.	2.3	12

#	Article	IF	CITATIONS
55	Synthesis, characterization and cytotoxicity of Chitosan/Polyvinyl Alcohol/Bioactive Glass hybrid scaffolds obtained by lyophilization. Revista Materia, 2016, 21, 964-973.	0.2	12
56	Effect of the degree of clay delamination on the phase morphology, surface chemical aspects, and properties of hydrolyzable polyurethanes for periodontal regeneration. Journal of Applied Polymer Science, 2009, 114, 254-263.	2.6	11
57	Structural analysis of fluorineâ€containing bioactive glass nanoparticles synthesized by sol–gel route assisted by ultrasound energy. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 360-366.	3.4	11
58	Characterization of Hybrid Bioactive Glass-polyvinyl Alcohol Scaffolds Containing a PTHrP-derived Pentapeptide as Implants for Tissue Engineering Applications. Open Biomedical Engineering Journal, 2014, 8, 20-27.	0.5	10
59	Bioactive glass nanoparticles for periodontal regeneration and applications in dentistry. , 2019, , 351-383.		10
60	<i>In vitro</i> effects of the co-release of icariin and strontium from bioactive glass submicron spheres on the reduced osteogenic potential of rat osteoporotic bone marrow mesenchymal stem cells. Biomedical Materials (Bristol), 2020, 15, 055023.	3.3	10
61	Effect of the ionic product of bioglass 60s on osteoblastic activity in canines. BMC Veterinary Research, 2015, 11, 247.	1.9	9
62	Synthesis and Characterization of Silica-Chitosan Porous Hybrids for Tissue Engineering. Key Engineering Materials, 2007, 361-363, 967-970.	0.4	8
63	Effect of the Type of Surfactant on Bioactive Glasses Foam Formation. Key Engineering Materials, 2003, 240-242, 257-260.	0.4	7
64	XRD, SEM/EDX and FTIR Characterization of Brazilian Natural Coral. Key Engineering Materials, 2005, 284-286, 43-46.	0.4	7
65	Mechanical Behavior of Nanostructured Hybrids Based on Poly(Vinyl Alcohol)/Bioactive Glass Reinforced with Functionalized Carbon Nanotubes. Journal of Nanomaterials, 2012, 2012, 1-9.	2.7	7
66	In vitro degradation of chitosan composite foams for biomedical applications and effect of bioactive glass as a crosslinker. Biomedical Glasses, 2018, 4, 45-56.	2.4	7
67	BG60S dissolution interferes with osteoblast calcium signals. Journal of Materials Science: Materials in Medicine, 2007, 18, 265-271.	3.6	6
68	Comparative Effect of the Ionic Products from Bioactive Glass Dissolution on the Behavior of Cementoblasts, Osteoblasts, and Fibroblasts. Key Engineering Materials, 2008, 396-398, 55-59.	0.4	6
69	Bioactive Glass Nanoparticles for Periodontal Regeneration and Applications in Dentistry. , 2013, , 299-322.		6
70	Application of Fluorine Containing Bioactive Glass Nanoparticles in Dentin Hypersensitivity Treatment. Key Engineering Materials, 0, 696, 103-107.	0.4	6
71	Cytotoxicity Evaluation of Bioactive Glass-Polyvinyl Alcohol Hybrid Foams Prepared by the Sol-Gel Method. Key Engineering Materials, 2005, 284-286, 589-592.	0.4	5
72	Characterization of calcium phosphate coating and zinc incorporation on the porous alumina scaffolds. Materials Research, 2007, 10, 27-29.	1.3	5

#	Article	IF	CITATIONS
73	3D NANOCOMPOSITE CHITOSAN/BIOACTIVE GLASS SCAFFOLDS OBTAINED USING TWO DIFFERENT ROUTES: AN EVALUATION OF THE POROUS STRUCTURE AND MECHANICAL PROPERTIES. Quimica Nova, 2016, , .	0.3	5
74	Efeito do produto iônico do biovidro 60S na diferenciação osteogênica de células-tronco mesenquimais do tecido adiposo de cães. Arquivo Brasileiro De Medicina Veterinaria E Zootecnia, 2015, 67, 969-978.	0.4	5
75	Hybrid Matrix Grafts to Favor Tissue Regeneration in Rabbit Femur Bone Lesions. Open Biomedical Engineering Journal, 2012, 6, 85-91.	0.5	5
76	The effect of bioactive glass nanoparticles on the behavior of human periodontal ligament cells. Dental Materials, 2011, 27, e42-e43.	3.5	4
77	Comparison of the Effect of Sol-Gel and Coprecipitation Routes on the Properties and Behavior of Nanocomposite Chitosan-Bioactive Glass Membranes for Bone Tissue Engineering. Journal of Nanomaterials, 2015, 2015, 1-8.	2.7	4
78	Improved biocompatibility of polyurethane film by association with bioactive glass through ultrasonic implantation. Materials Letters, 2018, 223, 53-56.	2.6	4
79	Tailoring Mechanical Behavior of PVA-Bioactive Glass Hybrid Foams. Key Engineering Materials, 2007, 361-363, 289-292.	0.4	3
80	Simple preparation of 58S bioactive glass/polycaprolactone composite scaffolds by freeze-drying under ambient conditions. Materials Letters, 2019, 256, 126647.	2.6	3
81	Fluorine-Containing Bioactive Glass Spherical Particles Synthesized By Sol-Gel Route Assisted by Ultrasound Energy or Mechanical Mixing. Materials Research, 2020, 23, .	1.3	3
82	Propriedades biomecânicas da fáscia lata e do ligamento cruzado cranial de cães. Arquivo Brasileiro De Medicina Veterinaria E Zootecnia, 2001, 53, 27-36.	0.4	3
83	Attachment and Proliferation of Human-Adipose-Tissue-Derived Stem Cells on Bioactive Glass/PVA Hybrid Scaffolds. ISRN Materials Science, 2011, 2011, 1-7.	1.0	3
84	Mechanical Behavior of Bioactive Glass-Polyvinyl Alcohol Hybrid Foams Obtained by the Sol-Gel Process. Key Engineering Materials, 2005, 284-286, 757-760.	0.4	2
85	Effect of Increasing Polyvinyl Alcohol Content on the Porous Structure and Mechanical Properties of Sol-Gel Derived Hybrids Foams. Key Engineering Materials, 2007, 361-363, 555-558.	0.4	2
86	Matriz porosa do BV60S no tratamento de defeitos \tilde{A}^3 sseos cr \tilde{A} ticosem r \tilde{A}_i dios de c \tilde{A} £es. Arquivo Brasileiro De Medicina Veterinaria E Zootecnia, 2015, 67, 993-1002.	0.4	2
87	Cytological and Biochemical Evaluation of Osteoblast in Contact with Ionic Products of Bioactive Ceramics. Key Engineering Materials, 2003, 240-242, 703-706.	0.4	1
88	Characteristic of Osteoblast Vacuole Formation in the Presence of Ionic Products from BG60S Dissolution. Key Engineering Materials, 2003, 254-256, 773-776.	0.4	1
89	Effects of Bioactive Glass 60S and Biphasic Calcium Phosphate on Human Peripheral Blood Mononuclear Cells. Key Engineering Materials, 2004, 254-256, 841-844.	0.4	1
90	Avaliação das propriedades mecânicas de espumas hÃbridas de vidro bioativo/álcool polivinÃŀico para aplicação em engenharia de tecidos. Revista Materia, 2007, 12, 140-149.	0.2	1

#	Article	IF	CITATIONS
91	Hybrid Bioactive Glass-Polyvinyl Alcohol Prepared by Sol-Gel. Materials Science Forum, 2008, 587-588, 62-66.	0.3	1
92	<i>In Vitro</i> and <i>In Vivo</i> Evaluation of Bioactive Glass/PVA Porous Hybrids for Application in Bone Reconstruction. Key Engineering Materials, 0, 396-398, 671-674.	0.4	1
93	Avaliação da influência dos parâmetros de spray a plasma sobre a cristalinidade de recobrimentos de hidroxiapatita. Ceramica, 1999, 45, 128-132.	0.8	1
94	In Vitro Study of Apatite Precipitation on Poly(2-Hydroxyethyl Methacrylate)-Silica Hybrids with Controlled Surface Areas. Key Engineering Materials, 2003, 240-242, 195-200.	0.4	0
95	The Effect of Surface Treatment and Corrosive Etching on Flexural Strength of a Dental Porcelain. Key Engineering Materials, 2004, 254-256, 809-812.	0.4	O
96	Glutamate Release by Osteoblasts in the Presence of Ionic Products from Bioactive Glass 60S. Key Engineering Materials, 2005, 284-286, 537-540.	0.4	0
97	Evaluation of Biocompatibility for Porous Bioactive Glass Scaffolds. Key Engineering Materials, 2006, 309-311, 1035-1038.	0.4	O
98	SÃntese sol-gel de scaffolds porosos de vidro bioativo com adição de agente porogênico. Ceramica, 2016, 62, 328-337.	0.8	0
99	Matriz porosa do BV60S associada a células osteoprogenitoras alógenas no tratamento de defeitos ósseos crÃticos em rádios de cães. Arquivo Brasileiro De Medicina Veterinaria E Zootecnia, 2019, 71, 1121-1130.	0.4	0