Manoj Kumar Gupta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1852421/publications.pdf

Version: 2024-02-01

53 papers 4,063 citations

279798 23 h-index 54 g-index

55 all docs

55 docs citations

55 times ranked 5301 citing authors

#	Article	IF	CITATIONS
1	Graphene quantum dots: A contemporary perspective on scope, opportunities, and sustainability. Renewable and Sustainable Energy Reviews, 2022, 157, 111993.	16.4	41
2	Unraveling the role of agro waste-derived graphene quantum dots on dielectric and mechanical property of the fly ash based polymer nanocomposite. Journal of Alloys and Compounds, 2022, 903, 163953.	5 . 5	16
3	Remarkable enhancement in dielectric constant and band gap shrinkage of hydrothermal grown fly ash waste derived zeolite nanoneedles. Physica B: Condensed Matter, 2022, 634, 413817.	2.7	4
4	Flexible Interconnected Cuâ€Ni Nanoalloys Decorated Carbon Nanotubeâ€Poly(vinylidene fluoride) Piezoelectric Nanogenerator. Advanced Materials Technologies, 2022, 7, .	5.8	7
5	Poling-Polarization-Mediated Centrosymmetric Charge-Transfer Organic-Cocrystal-Based Flexible Triboelectric Nanogenerator. ACS Applied Electronic Materials, 2022, 4, 3665-3678.	4.3	1
6	Effects of tool pin profile and feed rate on wear performance of pine leaf ash/Al composite prepared by friction stir processing. Journal of Adhesion Science and Technology, 2021, 35, 256-268.	2.6	19
7	Solution processed high performance piezoelectric eggshell membrane – PVDF layer composite nanogenerator via tuning the interfacial polarization. Journal of Alloys and Compounds, 2021, 863, 158406.	5.5	25
8	Transparent flexible graphene quantum dot-(PVDF-HFP) piezoelectric nanogenerator. Materials Letters, 2021, 290, 129493.	2.6	47
9	Humidity Sustainable Hydrophobic Poly(vinylidene fluoride)-Carbon Nanotubes Foam Based Piezoelectric Nanogenerator. ACS Applied Materials & Interfaces, 2021, 13, 27245-27254.	8.0	54
10	Unraveling Anomalous Dielectric Phase Transition in Few-Layered 2H/1T MoS ₂ Nanosheets. Journal of Physical Chemistry C, 2021, 125, 14089-14097.	3.1	13
11	Combination of nano-particles of graphite and PTFE in the right amount for synergism as anti-wear and extreme pressure additive in oil. Surface Topography: Metrology and Properties, 2021, 9, 035049.	1.6	1
12	Synthesis dielectric and mechanical properties of paddy straw derived graphene quantum dots-stone waste nanocomposite. Materials Letters, 2021, 301, 130323.	2.6	16
13	The role of carbon nanotubes on flexural strength and dielectric properties of water sustainable fly ash polymer nanocomposites. Physica B: Condensed Matter, 2021, 620, 413283.	2.7	17
14	A complex interdependence of dispersant in nano-suspensions with varying amount of graphite particles on its stability and tribological performance. Tribology International, 2020, 142, 105968.	5.9	19
15	Analysis of tribological behavior of Al/Gr/MoS2 surface composite fabricated by friction stir process. Carbon Letters, 2020, 30, 399-408.	5.9	20
16	Moisture resistant stones waste based polymer composites with enhanced dielectric constant and flexural strength. Composites Part B: Engineering, 2020, 182, 107656.	12.0	16
17	Potential of graphene-based materials to combat COVID-19: properties, perspectives, and prospects. Materials Today Chemistry, 2020, 18, 100385.	3.5	86
18	Combination of nanoparticles of graphite and hexagonal boron nitride as anti-wear and extreme-pressure additives- On exploring the possibility of synergism. Surface Topography: Metrology and Properties, 2020, 8, 025025.	1.6	3

#	Article	IF	Citations
19	Friction stir process: a green fabrication technique for surface composites—a review paper. SN Applied Sciences, 2020, 2, 1.	2.9	34
20	A high performance flexible two dimensional vertically aligned ZnO nanodisc based piezoelectric nanogenerator <i>via</i> surface passivation. Nanoscale Advances, 2020, 2, 2044-2051.	4.6	24
21	Observation of anomalous phase transition and band gap shrinkage in zinc germanate nanorods. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2020, 259, 114602.	3.5	2
22	The effect of Co-doping on dielectric properties and bandgap of zinc silicate nanowires. Journal of Applied Physics, 2020, 127, 085104.	2.5	10
23	Non-centrosymmetric zinc silicate-graphene based transparent flexible piezoelectric nanogenerator. Nano Energy, 2020, 73, 104821.	16.0	44
24	Effects of tool profile on mechanical properties of aluminium alloy Al 1120 friction stir welds. Journal of Adhesion Science and Technology, 2020, 34, 2000-2010.	2.6	24
25	An Empirical Evaluation of K-Means Clustering Algorithm Using Different Distance/Similarity Metrics. Lecture Notes in Electrical Engineering, 2020, , 884-892.	0.4	16
26	Leveraging Artificial Intelligence for Effective Recruitment and Selection Processes. Lecture Notes in Electrical Engineering, 2020, , 287-293.	0.4	6
27	Analysis of mechanical and tribological behavior of wood flour filled glass fiber reinforced epoxy composite. Materials Research Express, 2019, 6, 085327.	1.6	15
28	Silk and Silk-Based Composites: Opportunities and Challenges. Materials Horizons, 2019, , 91-106.	0.6	1
29	Temperature dependent dielectric and electric properties of zinc silicate nanorods. Nano Structures Nano Objects, 2019, 17, 123-128.	3.5	16
30	Effects of Reinforcement on Tribological Behaviour of Aluminium Matrix Composites. Energy, Environment, and Sustainability, 2019, , 131-143.	1.0	5
31	Role of size of hexagonal boron nitride particles on triboâ€performance of nano and micro oils. Lubrication Science, 2018, 30, 441-456.	2.1	24
32	Giant dielectric constant and band gap reduction in hydrothermal grown highly crystalline zinc silicate nanorods. Materials Letters, 2018, 232, 66-69.	2.6	15
33	Exploration of potential of graphite particles with varying sizes as EPA and AWA in oils. Tribology International, 2018, 127, 264-275.	5.9	20
34	Tribo-Investigations on Oils With Dispersants and Hexagonal Boron Nitride Particles. Journal of Tribology, 2018, 140, .	1.9	28
35	Highly efficient flexible piezoelectric nanogenerator and femtosecond two-photon absorption properties of nonlinear lithium niobate nanowires. Journal of Applied Physics, 2017, 121, .	2.5	14
36	Synergism between particles of PTFE and hBN to enhance the performance of oils. Wear, 2017, 384-385, 169-177.	3.1	19

#	Article	IF	CITATIONS
37	Controllable Charge Transfer by Ferroelectric Polarization Mediated Triboelectricity. Advanced Functional Materials, 2016, 26, 3067-3073.	14.9	79
38	Flexible High-Performance Lead-Free Na _{0.47} K _{0.47} Li _{0.06} NbO ₃ Microcube-Structure-Based Piezoelectric Energy Harvester. ACS Applied Materials & Samp; Interfaces, 2016, 8, 1766-1773.	8.0	70
39	Energy Harvesting: Micropatterned P(VDFâ€TrFE) Filmâ€Based Piezoelectric Nanogenerators for Highly Sensitive Selfâ€Powered Pressure Sensors (Adv. Funct. Mater. 21/2015). Advanced Functional Materials, 2015, 25, 3276-3276.	14.9	8
40	Nanopatterned Textile-Based Wearable Triboelectric Nanogenerator. ACS Nano, 2015, 9, 3501-3509.	14.6	612
41	Ferroelectric Polarization in CH ₃ NH ₃ Pbl ₃ Perovskite. Journal of Physical Chemistry Letters, 2015, 6, 1729-1735.	4.6	180
42	Micropatterned P(VDFâ€TrFE) Filmâ€Based Piezoelectric Nanogenerators for Highly Sensitive Selfâ€Powered Pressure Sensors. Advanced Functional Materials, 2015, 25, 3203-3209.	14.9	334
43	Design and development of advanced polymer composites as high performance tribo-materials based on blends of PEK and ABPBI. Wear, 2015, 342-343, 65-76.	3.1	25
44	Transparent flexible stretchable piezoelectric and triboelectric nanogenerators for powering portable electronics. Nano Energy, 2015, 14, 139-160.	16.0	202
45	Nanotubes: Self-Compensated Insulating ZnO-Based Piezoelectric Nanogenerators (Adv. Funct. Mater.) Tj ETQq1	1 0 7843	14 ₆ rgBT /Ove
46	Nanogenerators: Highly Stretchable Piezoelectric-Pyroelectric Hybrid Nanogenerator (Adv. Mater.) Tj ETQq0 0 0 r	gBT /Over 21.0	ogk 10 Tf 50
47	Selfâ€Compensated Insulating ZnOâ€Based Piezoelectric Nanogenerators. Advanced Functional Materials, 2014, 24, 6949-6955.	14.9	91
48	Nanogenerators: Transparent Flexible Graphene Triboelectric Nanogenerators (Adv. Mater. 23/2014). Advanced Materials, 2014, 26, 3778-3778.	21.0	9
49	Highly Stretchable Piezoelectricâ€Pyroelectric Hybrid Nanogenerator. Advanced Materials, 2014, 26, 765-769.	21.0	469
50	Unidirectional Highâ€Power Generation via Stressâ€Induced Dipole Alignment from ZnSnO ₃ Nanocubes/Polymer Hybrid Piezoelectric Nanogenerator. Advanced Functional Materials, 2014, 24, 37-43.	14.9	249
51	Transparent Flexible Graphene Triboelectric Nanogenerators. Advanced Materials, 2014, 26, 3918-3925.	21.0	391
52	Hydrophobic Sponge Structureâ€Based Triboelectric Nanogenerator. Advanced Materials, 2014, 26, 5037-5042.	21.0	426
53	Two-Dimensional Vanadium-Doped ZnO Nanosheet-Based Flexible Direct Current Nanogenerator. ACS Nano, 2013, 7, 8932-8939.	14.6	172