
Yoan Miche

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1851573/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Efficient joint model learning, segmentation and model updating for visual tracking. Neural Networks, 2022, 147, 175-185.	3.3	5
2	Real-Time Illegal Parking Detection Algorithm in Urban Environments. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 20572-20587.	4.7	7
3	The Evolution of Networks and Management in a 6G World: An Inventor's View. IEEE Transactions on Network and Service Management, 2022, 19, 5395-5407.	3.2	7
4	Security policies definition and enforcement utilizing policy control function framework in 5G. Computer Communications, 2021, 172, 226-237.	3.1	9
5	End-to-end novel visual categories learning via auxiliary self-supervision. Neural Networks, 2021, 139, 24-32.	3.3	3
6	Label propagation via local geometry preserving for deep semi-supervised image recognition. Neural Networks, 2021, 143, 303-313.	3.3	3
7	Learning Representations With Local and Global Geometries Preserved for Machine Fault Diagnosis. IEEE Transactions on Industrial Electronics, 2020, 67, 2360-2370.	5.2	31
8	Unsupervised feature selection based extreme learning machine for clustering. Neurocomputing, 2020, 386, 198-207.	3.5	48
9	Unsupervised feature learning with sparse Bayesian auto-encoding based extreme learning machine. International Journal of Machine Learning and Cybernetics, 2020, 11, 1557-1569.	2.3	5
10	Simultaneously learning affinity matrix and data representations for machine fault diagnosis. Neural Networks, 2020, 122, 395-406.	3.3	7
11	ELM embedded discriminative dictionary learning for image classification. Neural Networks, 2020, 123, 331-342.	3.3	19
12	R-ELMNet: Regularized extreme learning machine network. Neural Networks, 2020, 130, 49-59.	3.3	16
13	Robust Real-time Face Tracking for People Wearing Face Masks. , 2020, , .		7
14	Per-sample prediction intervals for extreme learning machines. International Journal of Machine Learning and Cybernetics, 2019, 10, 991-1001.	2.3	5
15	ELM-SOM+: A continuous mapping for visualization. Neurocomputing, 2019, 365, 147-156.	3.5	10
16	Prototyping a Digital Twin for Real Time Remote Control Over Mobile Networks: Application of Remote Surgery. IEEE Access, 2019, 7, 20325-20336.	2.6	204
17	Texture Recognition on Metal Surface using Order-Less Scale Invariant GLAC. , 2019, , .		0
18	Quantitative Analysis of Gas Phase IR Spectra Based on Extreme Learning Machine Regression Model. Sensors, 2019, 19, 5535.	2.1	11

ΥΟΑΝ ΜΙCHE

#	Article	IF	CITATIONS
19	A Framework for Privacy Quantification: Measuring the Impact of Privacy Techniques Through Mutual Information, Distance Mapping, and Machine Learning. Cognitive Computation, 2019, 11, 241-261.	3.6	2
20	Content-Insensitive Blind Image Blurriness Assessment Using Weibull Statistics and Sparse Extreme Learning Machine. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49, 516-527.	5.9	8
21	Deformable Surface Registration with Extreme Learning Machines. Proceedings in Adaptation, Learning and Optimization, 2019, , 304-316.	1.5	4
22	Generating Word Embeddings from an Extreme Learning Machine for Sentiment Analysis and Sequence Labeling Tasks. Cognitive Computation, 2018, 10, 625-638.	3.6	42
23	Extreme Learning Machines for VISualization+R: Mastering Visualization with Target Variables. Cognitive Computation, 2018, 10, 464-477.	3.6	1
24	Adaptive and online network intrusion detection system using clustering and Extreme Learning Machines. Journal of the Franklin Institute, 2018, 355, 1752-1779.	1.9	62
25	Exploiting AIS Data for Intelligent Maritime Navigation: A Comprehensive Survey From Data to Methodology. IEEE Transactions on Intelligent Transportation Systems, 2018, 19, 1559-1582.	4.7	232
26	Data Driven Convolutional Sparse Coding for Visual Recognition. , 2018, , .		2
27	Mobile Subscriber Profile DataPrivacy Breach via 4GDiameter Interconnection. Journal of ICT Standardization, 2018, 6, 245-262.	0.6	2
28	ELM-SOM: A Continuous Self-Organizing Map for Visualization. , 2018, , .		8
29	Introduction to the special issue on deep reinforcement learning:An editorial. Neural Networks, 2018, 107, 1-2.	3.3	4
30	Anomaly-Based Intrusion Detection Using Extreme Learning Machine and Aggregation of Network Traffic Statistics in Probability Space. Cognitive Computation, 2018, 10, 848-863.	3.6	44
31	Incremental ELMVIS for Unsupervised Learning. Proceedings in Adaptation, Learning and Optimization, 2018, , 183-193.	1.5	0
32	Learning Flow Characteristics Distributions with ELM for Distributed Denial of Service Detection and Mitigation. Proceedings in Adaptation, Learning and Optimization, 2018, , 129-143.	1.5	3
33	NMF-Based Image Quality Assessment Using Extreme Learning Machine. IEEE Transactions on Cybernetics, 2017, 47, 232-243.	6.2	68
34	Brute-force Missing Data Extreme Learning Machine for Predicting Huntington's Disease. , 2017, , .		3
35	A theoretical study of the relationship between an ELM network and its subnetworks. , 2017, , .		3
36	Adding reliability to ELM forecasts by confidence intervals. Neurocomputing, 2017, 219, 232-241.	3.5	5

#	Article	IF	CITATIONS
37	Deformable and Occluded Object Tracking via Graph Learning. , 2017, , .		Ο
38	Large-Scale Automated Sleep Staging. Sleep, 2017, 40, .	0.6	86
39	Practical Estimation of Mutual Information on Non-Euclidean Spaces. Lecture Notes in Computer Science, 2017, , 123-136.	1.0	1
40	On Distance Mapping from non-Euclidean Spaces to Euclidean Spaces. Lecture Notes in Computer Science, 2017, , 3-13.	1.0	0
41	Combined nonlinear visualization and classification: ELMVIS++C. , 2016, , .		3
42	Investigation on driver stress utilizing ECG signals with on-board navigation systems in use. , 2016, , .		10
43	ELMVIS+: Fast nonlinear visualization technique based on cosine distance and extreme learning machines. Neurocomputing, 2016, 205, 247-263.	3.5	20
44	Learning Polychronous Neuronal Groups Using Joint Weight-Delay Spike-Timing-Dependent Plasticity. Neural Computation, 2016, 28, 2181-2212.	1.3	8
45	Fast and Accurate Spatiotemporal Fusion Based Upon Extreme Learning Machine. IEEE Geoscience and Remote Sensing Letters, 2016, 13, 2039-2043.	1.4	62
46	Smile detection using Pair-wise Distance Vector and Extreme Learning Machine. , 2016, , .		11
47	Two-stage structured learning approach for stable occupancy detection. , 2016, , .		7
48	On the Development of a Metric for Quality of Information Content over Anonymised Data-Sets. , 2016, , .		2
49	Extreme learning machine for missing data using multiple imputations. Neurocomputing, 2016, 174, 220-231.	3.5	90
50	Evaluating Confidence Intervals for ELM Predictions. Proceedings in Adaptation, Learning and Optimization, 2016, , 413-422.	1.5	1
51	Driver Distraction Detection Using Semi-Supervised Machine Learning. IEEE Transactions on Intelligent Transportation Systems, 2016, 17, 1108-1120.	4.7	167
52	Brain MRI morphological patterns extraction tool based on Extreme Learning Machine and majority vote classification. Neurocomputing, 2016, 174, 344-351.	3.5	19
53	A Fast SVD-Hidden-nodes based Extreme Learning Machine for Large-Scale Data Analytics. Neural Networks, 2016, 77, 14-28.	3.3	34
54	Singular Value Decomposition update and its application to (Inc)-OP-ELM. Neurocomputing, 2016, 174, 99-108.	3.5	10

#	Article	IF	CITATIONS
55	ELMVIS+: Improved Nonlinear Visualization Technique Using Cosine Distance and Extreme Learning Machines. Proceedings in Adaptation, Learning and Optimization, 2016, , 357-369.	1.5	5
56	Data Anonymization as a Vector Quantization Problem: Control Over Privacy for Health Data. Lecture Notes in Computer Science, 2016, , 193-203.	1.0	4
57	On Mutual Information over Non-Euclidean Spaces, Data Mining and Data Privacy Levels. Proceedings in Adaptation, Learning and Optimization, 2016, , 371-383.	1.5	0
58	Multifeature Extreme Ordinal Ranking Machine for Facial Age Estimation. Mathematical Problems in Engineering, 2015, 2015, 1-9.	0.6	1
59	What are Extreme Learning Machines? Filling the Cap Between Frank Rosenblatt's Dream and John von Neumann's Puzzle. Cognitive Computation, 2015, 7, 263-278.	3.6	386
60	Minimal Learning Machine: A novel supervised distance-based approach for regression and classification. Neurocomputing, 2015, 164, 34-44.	3.5	51
61	Cluster Regularized Extreme Learning Machine for Detecting Mixed-Type Distraction in Driving. , 2015, , .		9
62	Hierarchical Extreme Learning Machine for unsupervised representation learning. , 2015, , .		31
63	Extreme Learning Machines for Multiclass Classification: Refining Predictions with Gaussian Mixture Models. Lecture Notes in Computer Science, 2015, , 153-164.	1.0	10
64	MD-ELM: Originally Mislabeled Samples Detection using OP-ELM Model. Neurocomputing, 2015, 159, 242-250.	3.5	13
65	Arbitrary Category Classification of Websites Based on Image Content. IEEE Computational Intelligence Magazine, 2015, 10, 30-41.	3.4	20
66	SOM-ELM—Self-Organized Clustering using ELM. Neurocomputing, 2015, 165, 238-254.	3.5	18
67	High-Performance Extreme Learning Machines: A Complete Toolbox for Big Data Applications. IEEE Access, 2015, 3, 1011-1025.	2.6	283
68	Towards an intelligent framework for multimodal affective data analysis. Neural Networks, 2015, 63, 104-116.	3.3	173
69	Meme representations for game agents. World Wide Web, 2015, 18, 215-234.	2.7	3
70	Trends in extreme learning machines: A review. Neural Networks, 2015, 61, 32-48.	3.3	1,454
71	Multiple kernel extreme learning machine. Neurocomputing, 2015, 149, 253-264.	3.5	157
72	Binary/ternary extreme learning machines. Neurocomputing, 2015, 149, 187-197.	3.5	35

#	Article	IF	CITATIONS
73	Compressed-Domain Ship Detection on Spaceborne Optical Image Using Deep Neural Network and Extreme Learning Machine. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53, 1174-1185.	2.7	350
74	Fast Face Recognition Via Sparse Coding and Extreme Learning Machine. Cognitive Computation, 2014, 6, 264.	3.6	21
75	A fast learning algorithm for multi-layer extreme learning machine. , 2014, , .		16
76	Extreme learning machine towards dynamic model hypothesis in fish ethology research. Neurocomputing, 2014, 128, 273-284.	3.5	51
77	Learning to Rank with Extreme Learning Machine. Neural Processing Letters, 2014, 39, 155-166.	2.0	32
78	An Insight into Extreme Learning Machines: Random Neurons, Random Features and Kernels. Cognitive Computation, 2014, 6, 376-390.	3.6	822
79	Long-term time series prediction using OP-ELM. Neural Networks, 2014, 51, 50-56.	3.3	138
80	Bankruptcy prediction using Extreme Learning Machine and financial expertise. Neurocomputing, 2014, 128, 296-302.	3.5	114
81	A Two-Stage Methodology Using K-NN and False-Positive Minimizing ELM for Nominal Data Classification. Cognitive Computation, 2014, 6, 432-445.	3.6	32
82	Ensemble delta test-extreme learning machine (DT-ELM) for regression. Neurocomputing, 2014, 129, 153-158.	3.5	30
83	Feature selection for nonlinear models with extreme learning machines. Neurocomputing, 2013, 102, 111-124.	3.5	69
84	An extreme learning machine approach for speaker recognition. Neural Computing and Applications, 2013, 22, 417-425.	3.2	48
85	Computation using mismatch: Neuromorphic extreme learning machines. , 2013, , .		8
86	Extending the Minimal Learning Machine for Pattern Classification. , 2013, , .		1
87	Regularized extreme learning machine for regression with missing data. Neurocomputing, 2013, 102, 45-51.	3.5	211
88	Extreme Learning Machines [Trends & Controversies]. IEEE Intelligent Systems, 2013, 28, 30-59.	4.0	329
89	Extreme Learning Machine: A Robust Modeling Technique? Yes!. Lecture Notes in Computer Science, 2013, , 17-35.	1.0	17

#	Article	IF	CITATIONS
91	Voting base online sequential extreme learning machine for multi-class classification. , 2013, , .		5
92	FUZZY EXTREME LEARNING MACHINE FOR A CLASS OF FUZZY INFERENCE SYSTEMS. International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems, 2013, 21, 51-61.	0.9	10
93	Minimal Learning Machine: A New Distance-Based Method for Supervised Learning. Lecture Notes in Computer Science, 2013, , 408-416.	1.0	12
94	Fast variable selection for memetracker phrases time series prediction. , 2012, , .		0
95	Receding Horizon Cache and Extreme Learning Machine based Reinforcement Learning. , 2012, , .		2
96	Credit risk evaluation with extreme learning machine. , 2012, , .		7
97	Self-Adaptive Evolutionary Extreme Learning Machine. Neural Processing Letters, 2012, 36, 285-305.	2.0	251
98	Extreme learning machines for intrusion detection. , 2012, , .		47
99	Voting based extreme learning machine. Information Sciences, 2012, 185, 66-77.	4.0	311
100	Extreme Learning Machine for Regression and Multiclass Classification. IEEE Transactions on Systems, Man, and Cybernetics, 2012, 42, 513-529.	5.5	4,557
101	Universal Approximation of Extreme Learning Machine With Adaptive Growth of Hidden Nodes. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23, 365-371.	7.2	187
102	Methodology for Behavioral-based Malware Analysis and Detection Using Random Projections and K-Nearest Neighbors Classifiers. , 2011, , .		16
103	GPU-accelerated and parallelized ELM ensembles for large-scale regression. Neurocomputing, 2011, 74, 2430-2437.	3.5	194
104	Face recognition based on extreme learning machine. Neurocomputing, 2011, 74, 2541-2551.	3.5	191
105	TROP-ELM: A double-regularized ELM using LARS and Tikhonov regularization. Neurocomputing, 2011, 74, 2413-2421.	3.5	257
106	Advances in extreme learning machines (ELM2010). Neurocomputing, 2011, 74, 2411-2412.	3.5	22
107	Composite Function Wavelet Neural Networks with Differential Evolution and Extreme Learning Machine. Neural Processing Letters, 2011, 33, 251-265.	2.0	34
108	Patient Outcome Prediction with Heart Rate Variability and Vital Signs. Journal of Signal Processing Systems, 2011, 64, 265-278.	1.4	28

#	Article	IF	CITATIONS
109	Extended sequential adaptive fuzzy inference system for classification problems. Evolving Systems, 2011, 2, 71-82.	2.4	77
110	Extreme learning machines: a survey. International Journal of Machine Learning and Cybernetics, 2011, 2, 107-122.	2.3	1,625
111	OPELM and OPKNN in long-term prediction of time series using projected input data. Neurocomputing, 2010, 73, 1976-1986.	3.5	18
112	Constructive hidden nodes selection of extreme learning machine for regression. Neurocomputing, 2010, 73, 3191-3199.	3.5	120
113	Optimization method based extreme learning machine for classification. Neurocomputing, 2010, 74, 155-163.	3.5	799
114	OP-KNN: Method and Applications. Advances in Artificial Neural Systems, 2010, 2010, 1-6.	1.0	3
115	OP-ELM: Optimally Pruned Extreme Learning Machine. IEEE Transactions on Neural Networks, 2010, 21, 158-162.	4.8	657
116	Adaptive Ensemble Models of Extreme Learning Machines for Time Series Prediction. Lecture Notes in Computer Science, 2009, , 305-314.	1.0	63
117	Ensemble of online sequential extreme learning machine. Neurocomputing, 2009, 72, 3391-3395.	3.5	302
118	Error Minimized Extreme Learning Machine With Growth of Hidden Nodes and Incremental Learning. IEEE Transactions on Neural Networks, 2009, 20, 1352-1357.	4.8	562
119	Efficient Parallel Feature Selection for Steganography Problems. Lecture Notes in Computer Science, 2009, , 1224-1231.	1.0	11
120	A constructive enhancement for Online Sequential Extreme Learning Machine. , 2009, , .		9
121	Online Sequential Fuzzy Extreme Learning Machine for Function Approximation and Classification Problems. IEEE Transactions on Systems, Man, and Cybernetics, 2009, 39, 1067-1072.	5.5	306
122	Reliable Steganalysis Using a Minimum Set of Samples and Features. Eurasip Journal on Information Security, 2009, 2009, 1-13.	2.2	11
123	Sparse Linear Combination of SOMs for Data Imputation: Application to Financial Database. Lecture Notes in Computer Science, 2009, , 290-297.	1.0	5
124	Incremental extreme learning machine with fully complex hidden nodes. Neurocomputing, 2008, 71, 576-583.	3.5	283
125	Enhanced random search based incremental extreme learning machine. Neurocomputing, 2008, 71, 3460-3468.	3.5	809
126	Reply to "Comments on "The Extreme Learning Machineâ€â€• IEEE Transactions on Neural Networks, 200 19, 1495-1496.)8, _{4.8}	24

#	Article	IF	CITATIONS
127	Patient classification based on pre-hospital heart rate variability. , 2008, , .		Ο
128	Extreme learning machine for multi-categories classification applications. , 2008, , .		36
129	Optimal Pruned K-Nearest Neighbors: OP-KNN Application to Financial Modeling. , 2008, , .		4
130	Long-term prediction of time series using NNE-based projection and OP-ELM. , 2008, , .		16
131	Extreme Learning Machine based bacterial protein subcellular localization prediction. , 2008, , .		7
132	OP-ELM: Theory, Experiments and a Toolbox. Lecture Notes in Computer Science, 2008, , 145-154.	1.0	60
133	Advantages of Using Feature Selection Techniques on Steganalysis Schemes. , 2007, , 606-613.		8
134	Mahalanobis Ellipsoidal Learning Machine for One Class Classification. , 2007, , .		10
135	Convex incremental extreme learning machine. Neurocomputing, 2007, 70, 3056-3062.	3.5	1,012
136	A Feature Selection Methodology for Steganalysis. Lecture Notes in Computer Science, 2006, , 49-56.	1.0	33
137	A Fast and Accurate Online Sequential Learning Algorithm for Feedforward Networks. IEEE Transactions on Neural Networks, 2006, 17, 1411-1423.	4.8	1,753
138	Real-Time Learning Capability of Neural Networks. IEEE Transactions on Neural Networks, 2006, 17, 863-878.	4.8	182
139	A New Machine Learning Paradigm for Terrain Reconstruction. IEEE Geoscience and Remote Sensing Letters, 2006, 3, 382-386.	1.4	69
140	Universal Approximation Using Incremental Constructive Feedforward Networks With Random Hidden Nodes. IEEE Transactions on Neural Networks, 2006, 17, 879-892.	4.8	2,219
141	Extreme learning machine: Theory and applications. Neurocomputing, 2006, 70, 489-501.	3.5	10,570
142	Fuzzy Fault Tolerant Controller for Actuator Failures during Aircraft Autolanding. , 2006, , .		5
143	Can threshold networks be trained directly?. IEEE Transactions on Circuits and Systems Part 2: Express Briefs, 2006, 53, 187-191.	2.3	235
144	Terrain Modeling Using Machine Learning Methods. , 2006, , .		0

2

#	Article	IF	CITATIONS
145	Fully complex extreme learning machine. Neurocomputing, 2005, 68, 306-314.	3.5	368
146	Performance Evaluation of GAP-RBF Network in Channel Equalization. Neural Processing Letters, 2005, 22, 223-233.	2.0	17
147	Fast Modular Network Implementation for Support Vector Machines. IEEE Transactions on Neural Networks, 2005, 16, 1651-1663.	4.8	38
148	An Efficient Sequential RBF Network for Gene Expression-Based Multi-category classification. , 2005, , .		1
149	Using FCMC, FVS, and PCA Techniques for Feature Extraction of Multispectral Images. IEEE Geoscience and Remote Sensing Letters, 2005, 2, 108-112.	1.4	58
150	A Generalized Growing and Pruning RBF (GGAP-RBF) Neural Network for Function Approximation. IEEE Transactions on Neural Networks, 2005, 16, 57-67.	4.8	584
151	An Efficient Sequential Learning Algorithm for Growing and Pruning RBF (GAP-RBF) Networks. IEEE Transactions on Systems, Man, and Cybernetics, 2004, 34, 2284-2292.	5.5	325
152	Learning capability and storage capacity of two-hidden-layer feedforward networks. IEEE Transactions on Neural Networks, 2003, 14, 274-281.	4.8	641
153	A Real-Time Learning Algorithm for Two-Hidden-Layer Feedforward Networks. , 2003, , .		1
154	Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions. IEEE Transactions on Neural Networks, 1998, 9, 224-229.	4.8	432
155	Ordering of Self-Organizing Maps in Multidimensional Cases. Neural Computation, 1998, 10, 19-23.	1.3	7
156	General approximation theorem on feedforward networks. , 0, , .		10
157	Time constrain optimal method to find the minimum architectures for feedforward neural networks. , 0, , .		0
158	A fast modular implementation for neural networks. , 0, , .		0
159	Excerpts of research in brain sciences and neural networks in Singapore. , 0, , .		1
160	Extreme learning machine: a new learning scheme of feedforward neural networks. , 0, , .		1,082
161	Extreme learning machine: RBF network case. , 0, , .		83

A fast constructive learning algorithm for single-hidden-layer neural networks. , 0, , .

10

#	Article	IF	CITATIONS
163	An efficient sequential RBF network for bio-medical classification problems. , 0, , .		4
164	Time series study of GGAP-RBF network: predictions of Nasdaq stock and nitrate contamination of drinking water. , 0, , .		18
165	Protein sequence classification using extreme learning machine. , 0, , .		35