Zeeshan Ahmad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1851288/publications.pdf

Version: 2024-02-01

87843 149623 4,513 147 38 56 citations h-index g-index papers 152 152 152 5056 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A review of nanoparticle functionality and toxicity on the central nervous system. Journal of the Royal Society Interface, 2010, 7, S411-22.	1.5	202
2	Microneedle Coating Techniques for Transdermal Drug Delivery. Pharmaceutics, 2015, 7, 486-502.	2.0	115
3	Generation of multilayered structures for biomedical applications using a novel tri-needle coaxial device and electrohydrodynamic flow. Journal of the Royal Society Interface, 2008, 5, 1255-1261.	1.5	109
4	Encapsulation of rose hip seed oil into fibrous zein films for ambient and on demand food preservation via coaxial electrospinning. Journal of Food Engineering, 2016, 191, 115-123.	2.7	108
5	One-step electrohydrodynamic production of drug-loaded micro- and nanoparticles. Journal of the Royal Society Interface, 2010, 7, 667-675.	1.5	96
6	Pharmaceutical and biomaterial engineering via electrohydrodynamic atomization technologies. Drug Discovery Today, 2017, 22, 157-165.	3.2	91
7	The role of surface wettability and surface charge of electrosprayed nanoapatites on the behaviour of osteoblasts. Acta Biomaterialia, 2010, 6, 750-755.	4.1	89
8	Electrospun PVP–indomethacin constituents for transdermal dressings and drug delivery devices. International Journal of Pharmaceutics, 2014, 473, 95-104.	2.6	87
9	Application of mesoporous silica nanoparticles as drug delivery carriers for chemotherapeutic agents. Drug Discovery Today, 2020, 25, 1513-1520.	3.2	83
10	Preparation of active 3D film patches via aligned fiber electrohydrodynamic (EHD) printing. Scientific Reports, 2017, 7, 43924.	1.6	80
11	Mass and controlled fabrication of aligned PVP fibers for matrix type antibiotic drug delivery systems. Chemical Engineering Journal, 2017, 307, 661-669.	6.6	72
12	Electrohydrodynamic Direct Writing of Biomedical Polymers and Composites. Macromolecular Materials and Engineering, 2010, 295, 315-319.	1.7	71
13	The role of electrosprayed apatite nanocrystals in guiding osteoblast behaviour. Biomaterials, 2008, 29, 1833-1843.	5.7	68
14	Novel Electrohydrodynamic Printing of Nanocomposite Biopolymer Scaffolds. Journal of Bioactive and Compatible Polymers, 2007, 22, 265-280.	0.8	64
15	Porous Inorganic Drug Delivery Systems—a Review. AAPS PharmSciTech, 2017, 18, 1507-1525.	1.5	63
16	Tri-Needle Coaxial Electrospray Engineering of Magnetic Polymer Yolk–Shell Particles Possessing Dual-Imaging Modality, Multiagent Compartments, and Trigger Release Potential. ACS Applied Materials & amp; Interfaces, 2017, 9, 21485-21495.	4.0	62
17	Electrosprayed mesoporous particles for improved aqueous solubility of a poorly water soluble anticancer agent: in vitro and ex vivo evaluation. Journal of Controlled Release, 2018, 278, 142-155.	4.8	62
18	Transdermal Microneedles—A Materials Perspective. AAPS PharmSciTech, 2020, 21, 12.	1.5	62

#	Article	IF	CITATIONS
19	Hollow polycaprolactone composite fibers for controlled magnetic responsive antifungal drug release. Colloids and Surfaces B: Biointerfaces, 2016, 145, 757-767.	2.5	60
20	A novel core-shell nanofiber drug delivery system intended for the synergistic treatment of melanoma. European Journal of Pharmaceutical Sciences, 2019, 137, 105002.	1.9	56
21	Stratified scaffolds for osteochondral tissue engineering applications: Electrospun PDLLA nanofibre coated Bioglass®-derived foams. Journal of Biomaterials Applications, 2013, 27, 537-551.	1.2	55
22	Facile Preparation of Drug-Loaded Tristearin Encapsulated Superparamagnetic Iron Oxide Nanoparticles Using Coaxial Electrospray Processing. Molecular Pharmaceutics, 2017, 14, 2010-2023.	2.3	55
23	Pharmacological effects of natural Ganoderma and its extracts on neurological diseases: A comprehensive review. International Journal of Biological Macromolecules, 2019, 121, 1160-1178.	3.6	55
24	How Do Microbubbles and Ultrasound Interact? Basic Physical, Dynamic and Engineering Principles. Current Pharmaceutical Design, 2012, 18, 2118-2134.	0.9	54
25	Essential Oil Bioactive Fibrous Membranes Prepared via Coaxial Electrospinning. Journal of Food Science, 2017, 82, 1412-1422.	1.5	54
26	Optimising the shell thickness-to-radius ratio for the fabrication of oil-encapsulated polymeric microspheres. Chemical Engineering Journal, 2016, 284, 963-971.	6.6	53
27	Development and characterisation of electrospun timolol maleate-loaded polymeric contact lens coatings containing various permeation enhancers. International Journal of Pharmaceutics, 2017, 532, 408-420.	2.6	53
28	Smart microneedle coatings for controlled delivery and biomedical analysis. Journal of Drug Targeting, 2014, 22, 790-795.	2.1	48
29	Ganoderma lucidum polysaccharide loaded sodium alginate micro-particles prepared via electrospraying in controlled deposition environments. International Journal of Pharmaceutics, 2017, 524, 148-158.	2.6	47
30	Preparation of Polymeric Carriers for Drug Delivery with Different Shape and Size Using an Electric Jet. Current Pharmaceutical Biotechnology, 2009, 10, 600-608.	0.9	45
31	A review of emerging technologies enabling improved solid oral dosage form manufacturing and processing. Advanced Drug Delivery Reviews, 2021, 178, 113840.	6.6	45
32	Size mapping of electric field-assisted production of polycaprolactone particles. Journal of the Royal Society Interface, 2010, 7, S393-402.	1.5	44
33	Preparation and evaluation of cerium oxide-bovine hydroxyapatite composites for biomedical engineering applications. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 35, 70-76.	1.5	44
34	Development and characterisation of cellulose based electrospun mats for buccal delivery of non-steroidal anti-inflammatory drug (NSAID). European Journal of Pharmaceutical Sciences, 2017, 102, 147-155.	1.9	44
35	Continuous Generation of Ethyl Cellulose Drug Delivery Nanocarriers from Microbubbles. Pharmaceutical Research, 2013, 30, 225-237.	1.7	43
36	Fabrication of patterned polymer-antibiotic composite fibers via electrohydrodynamic (EHD) printing. Journal of Drug Delivery Science and Technology, 2016, 35, 114-123.	1.4	43

#	Article	IF	Citations
37	Nanoparticles of alkylglyceryl-dextran-graft-poly(lactic acid) for drug delivery to the brain: Preparation and in vitro investigation. Acta Biomaterialia, 2015, 23, 250-262.	4.1	42
38	Designer fibers from 2D to 3D – Simultaneous and controlled engineering of morphology, shape and size. Chemical Engineering Journal, 2018, 334, 89-98.	6.6	42
39	Electrohydrodynamic forming of porous ceramic capsules from a preceramic polymer. Materials Letters, 2009, 63, 483-485.	1.3	38
40	Direct Writing of Polycaprolactone Polymer for Potential Biomedical Engineering Applications. Advanced Engineering Materials, 2011, 13, B296.	1.6	38
41	Multi-compartment centrifugal electrospinning based composite fibers. Chemical Engineering Journal, 2017, 330, 541-549.	6.6	38
42	Electrically atomised formulations of timolol maleate for direct and on-demand ocular lens coatings. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 119, 170-184.	2.0	37
43	Electrospun Orodispersible Films of Isoniazid for Pediatric Tuberculosis Treatment. Pharmaceutics, 2020, 12, 470.	2.0	37
44	Influence of nanohydroxyapatite patterns deposited by electrohydrodynamic spraying on osteoblast response. Journal of Biomedical Materials Research - Part A, 2008, 85A, 188-194.	2.1	36
45	Magnetic-responsive microparticles with customized porosity for drug delivery. RSC Advances, 2016, 6, 88157-88167.	1.7	36
46	3D electrohydrodynamic printing of highly aligned dual-core graphene composite matrices. Carbon, 2019, 153, 285-297.	5 . 4	36
47	Engineering and Development of Chitosan-Based Nanocoatings for Ocular Contact Lenses. Journal of Pharmaceutical Sciences, 2019, 108, 1540-1551.	1.6	36
48	Deposition of nano-hydroxyapatite particles utilising direct and transitional electrohydrodynamic processes. Journal of Materials Science: Materials in Medicine, 2008, 19, 3093-3104.	1.7	35
49	Fabrication and characterization of electrospun polyâ€DLâ€lactide (PDLLA) fibrous coatings on 45S5 Bioglass [®] substrates for bone tissue engineering applications. Journal of Chemical Technology and Biotechnology, 2010, 85, 768-774.	1.6	35
50	Engineering a material for biomedical applications with electric field assisted processing. Applied Physics A: Materials Science and Processing, 2009, 97, 31-37.	1.1	35
51	Electrohydrodynamic Bubbling: An Alternative Route to Fabricate Porous Structures of Silk Fibroin Based Materials. Biomacromolecules, 2013, 14, 1412-1422.	2.6	35
52	Fabrication of Biomaterials via Controlled Protein Bubble Generation and Manipulation. Biomacromolecules, 2011, 12, 4291-4300.	2.6	34
53	Antimicrobial Properties of Electrically Formed Elastomeric Polyurethane–Copper Oxide Nanocomposites for Medical and Dental Applications. Methods in Enzymology, 2012, 509, 87-99.	0.4	34
54	Near-infrared luminescent CaTiO ₃ :Nd ³⁺ nanofibers with tunable and trackable drug release kinetics. Journal of Materials Chemistry B, 2015, 3, 7449-7456.	2.9	34

#	Article	IF	CITATIONS
55	Novel preparation of transdermal drug-delivery patches and functional wound healing materials. Journal of Drug Targeting, 2009, 17, 724-729.	2.1	33
56	Broad Scale and Structure Fabrication of Healthcare Materials for Drug and Emerging Therapies via Electrohydrodynamic Techniques. Advanced Therapeutics, 2019, 2, 1800024.	1.6	33
57	Preparation of Polymeric and Ceramic Porous Capsules by a Novel Electrohydrodynamic Process. Pharmaceutical Development and Technology, 2008, 13, 425-432.	1.1	32
58	Recent applications of electrical, centrifugal, and pressurised emerging technologies for fibrous structure engineering in drug delivery, regenerative medicine and theranostics. Advanced Drug Delivery Reviews, 2021, 175, 113823.	6.6	32
59	Electrohydrodynamic Print-Patterning of Nano-Hydroxyapatite. Journal of Biomedical Nanotechnology, 2006, 2, 201-207.	0.5	31
60	Tuning Microparticle Porosity during Single Needle Electrospraying Synthesis via a Non-Solvent-Based Physicochemical Approach. Polymers, 2015, 7, 2701-2710.	2.0	31
61	Engineering and characterisation of BCG-loaded polymeric microneedles. Journal of Drug Targeting, 2020, 28, 525-532.	2.1	30
62	Antibiofilm Effects of Macrolide Loaded Microneedle Patches: Prospects in Healing Infected Wounds. Pharmaceutical Research, 2021, 38, 165-177.	1.7	30
63	Development of random and ordered composite fiber hybrid technologies for controlled release functions. Chemical Engineering Journal, 2018, 343, 379-389.	6.6	28
64	Fabrication of patterned three-dimensional micron scaled core-sheath architectures for drug patches. Materials Science and Engineering C, 2019, 97, 776-783.	3.8	27
65	Fabrication and characterisation of self-applicating heparin sodium microneedle patches. Journal of Drug Targeting, 2021, 29, 60-68.	2.1	27
66	High Precision 3D Printing for Micro to Nano Scale Biomedical and Electronic Devices. Micromachines, 2022, 13, 642.	1.4	27
67	Formulation and evaluation of anti-rheumatic dexibuprofen transdermal patches: a quality-by-design approach. Journal of Drug Targeting, 2016, 24, 603-612.	2.1	26
68	Porous Yolk–Shell Particle Engineering via Nonsolvent-Assisted Trineedle Coaxial Electrospraying for Burn-Related Wound Healing. ACS Applied Materials & Trineedle Coaxial Electrospraying for Burn-Related Wound Healing. ACS Applied Materials & Trineedle Coaxial Electrospraying	4.0	26
69	Fabrication of flexible composite drug films via foldable linkages using electrohydrodynamic printing. Materials Science and Engineering C, 2020, 108, 110393.	3.8	26
70	Regulating poly-caprolactone fiber characteristics in-situ during one-step coaxial electrospinning via enveloping liquids. Materials Letters, 2016, 183, 202-206.	1.3	25
71	Improved transdermal delivery of cetirizine hydrochloride using polymeric microneedles. DARU, Journal of Pharmaceutical Sciences, 2019, 27, 673-681.	0.9	25
72	Engineering of Ganoderma lucidum polysaccharide loaded polyvinyl alcohol nanofibers for biopharmaceutical delivery. Journal of Drug Delivery Science and Technology, 2019, 50, 208-216.	1.4	25

#	Article	IF	Citations
73	Morphology control of electrosprayed core–shell particles via collection media variation. Materials Letters, 2015, 146, 59-64.	1.3	24
74	Hollow-layered nanoparticles for therapeutic delivery of peptide prepared using electrospraying. Journal of Materials Science: Materials in Medicine, 2015, 26, 256.	1.7	24
75	Synthesis of porous CaTiO3 nanotubes with tunable hollow structures via single-nozzle electrospinning. Materials Letters, 2015, 152, 82-85.	1.3	23
76	A novel approach for tailored medicines: Direct writing of Janus fibers. Journal of Drug Delivery Science and Technology, 2019, 50, 372-379.	1.4	22
77	A core–shell multi-drug platform to improve gastrointestinal tract microbial health using 3D printing. Biofabrication, 2020, 12, 025026.	3.7	22
78	Electrohydrodynamic Jetting Behaviour of Polyhedral Oligomeric Silsesquioxane Nanocomposite. Journal of Biomaterials Applications, 2009, 23, 293-309.	1.2	21
79	Targeting oxidative stress using tri-needle electrospray engineered Ganoderma lucidum polysaccharide-loaded porous yolk-shell particles. European Journal of Pharmaceutical Sciences, 2018, 125, 64-73.	1.9	21
80	Electrohydrodynamic atomisation driven design and engineering of opportunistic particulate systems for applications in drug delivery, therapeutics and pharmaceutics. Advanced Drug Delivery Reviews, 2021, 176, 113788.	6.6	21
81	A feasible approach toward bioactive glass nanofibers with tunable protein release kinetics for bone scaffolds. Colloids and Surfaces B: Biointerfaces, 2014, 122, 785-791.	2.5	20
82	Stable single device multi-pore electrospraying of polymeric microparticles via controlled electrostatic interactions. RSC Advances, 2015, 5, 87919-87923.	1.7	20
83	Surface modified electrospun porous magnetic hollow fibers using secondary downstream collection solvent contouring. Materials Letters, 2017, 204, 73-76.	1.3	20
84	Synthesis and Evaluation of Herbal Chitosan from Ganoderma Lucidum Spore Powder for Biomedical Applications. Scientific Reports, 2018, 8, 14608.	1.6	19
85	Electrospinning/electrospraying coatings for metal microneedles: A design of experiments (DOE) and quality by design (QbD) approach. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 156, 20-39.	2.0	19
86	Development of an ANN optimized mucoadhesive buccal tablet containing flurbiprofen and lidocaine for dental pain. Acta Pharmaceutica, 2016, 66, 245-256.	0.9	18
87	Approaches in topical ocular drug delivery and developments in the use of contact lenses as drug-delivery devices. Therapeutic Delivery, 2017, 8, 521-541.	1.2	18
88	Development of Ganoderma lucidum spore powder based proteoglycan and its application in hyperglycemic, antitumor and antioxidant function. Process Biochemistry, 2019, 84, 103-111.	1.8	18
89	Reinforcing of Biologically Derived Apatite with Commercial Inert Glass. Journal of Thermoplastic Composite Materials, 2009, 22, 407-419.	2.6	16
90	New platforms for multi-functional ocular lenses: engineering double-sided functionalized nano-coatings. Journal of Drug Targeting, 2015, 23, 305-310.	2.1	16

#	Article	IF	Citations
91	Engineering Onâ€Demand Magnetic Core–Shell Composite Wound Dressing Matrices via Electrohydrodynamic Microâ€Scale Printing. Advanced Engineering Materials, 2019, 21, 1900699.	1.6	16
92	Dual rotation centrifugal electrospinning: a novel approach to engineer multi-directional and layered fiber composite matrices. Drug Delivery and Translational Research, 2019, 9, 204-214.	3.0	16
93	Production of triterpenoid compounds from <i>Ganoderma lucidum</i> spore powder using ultrasound-assisted extraction. Preparative Biochemistry and Biotechnology, 2020, 50, 302-315.	1.0	16
94	Fibrous polymeric buccal film formulation, engineering and bio-interface assessment. European Polymer Journal, 2017, 97, 147-157.	2.6	15
95	Development of Water-Soluble Electrospun Fibers for the Oral Delivery of Cannabinoids. AAPS PharmSciTech, 2021, 22, 23.	1.5	15
96	Hot electrospinning of polyurethane fibres. Materials Letters, 2012, 68, 482-485.	1.3	14
97	Utilization of microfluidic V-junction device to prepare surface itraconazole adsorbed nanospheres. International Journal of Pharmaceutics, 2014, 472, 339-346.	2.6	14
98	Continuous micron-scaled rope engineering using a rotating multi-nozzle electrospinning emitter. Applied Physics Letters, 2016, 109, .	1.5	14
99	Preparation and characterization of indomethacin loaded films by piezoelectric inkjet printing: a personalized medication approach. Pharmaceutical Development and Technology, 2020, 25, 197-205.	1.1	14
100	COVID-19: Current Developments and Further Opportunities in Drug Delivery and Therapeutics. Pharmaceutics, 2020, 12, 945.	2.0	14
101	Bioinspired bubble design for particle generation. Journal of the Royal Society Interface, 2012, 9, 389-395.	1.5	13
102	Spatial and temporal evaluation of cell attachment to printed polycaprolactone microfibres. Acta Biomaterialia, 2013, 9, 5052-5062.	4.1	13
103	Development of paracetamol-caffeine co-crystals to improve compressional, formulation and in vivo performance. Drug Development and Industrial Pharmacy, 2018, 44, 1099-1108.	0.9	13
104	Co-printing of vertical axis aligned micron-scaled filaments via simultaneous dual needle electrohydrodynamic printing. European Polymer Journal, 2018, 104, 81-89.	2.6	13
105	Forming of Protein Bubbles and Porous Films Using Coâ€Axial Electrohydrodynamic Flow Processing. Macromolecular Materials and Engineering, 2011, 296, 8-13.	1.7	12
106	Janus particle synthesis via aligned non-concentric angular nozzles and electrohydrodynamic co-flow for tunable drug release. RSC Advances, 2016, 6, 77174-77178.	1.7	12
107	In Vitro and Ex Vivo Evaluation of Tablets Containing Piroxicam-Cyclodextrin Complexes for Buccal Delivery. Pharmaceutics, 2019, 11, 398.	2.0	12
108	Microparticle Formation via Tri-needle Coaxial Electrospray at Stable Jetting Modes. Industrial & Engineering Chemistry Research, 2020, 59, 14423-14432.	1.8	12

#	Article	IF	Citations
109	Preparation and characterization of multiactive electrospun fibers: Polyâ€É, arpolactone fibers loaded with hydroxyapatite and selected NSAIDs. Journal of Biomedical Materials Research - Part A, 2014, 102, 2583-2589.	2.1	11
110	Controlled Morphing of Microbubbles to Beaded Nanofibers via Electrically Forced Thin Film Stretching. Polymers, 2017, 9, 265.	2.0	11
111	Improvement of solubility, dissolution and stability profile of artemether solid dispersions and self emulsified solid dispersions by solvent evaporation method. Pharmaceutical Development and Technology, 2018, 23, 1007-1015.	1.1	11
112	Novel core-shell fiber delivery system for synergistic treatment of cervical cancer. Journal of Drug Delivery Science and Technology, 2020, 59, 101865.	1.4	11
113	Bioactivity of Nanoapatite Produced by Electrohydrodynamic Atomization. Journal of Bionanoscience, 2007, 1, 60-63.	0.4	11
114	Electrohydrodynamic coating of metal with nano-sized hydroxyapatite. Bio-Medical Materials and Engineering, 2007, 17, 335-46.	0.4	11
115	A device for the fabrication of multifunctional particles from microbubble suspensions. Materials Science and Engineering C, 2012, 32, 1005-1010.	3.8	10
116	EHDA Spraying: A Multi-Material Nano-Engineering Route. Current Pharmaceutical Design, 2015, 21, 3239-3247.	0.9	10
117	Evaluation of sustained-release in-situ injectable gels, containing naproxen sodium, using in vitro, in silico and in vivo analysis. International Journal of Pharmaceutics, 2022, 616, 121512.	2.6	10
118	Nanoparticle Delivery Systems Formed Using Electrically Sprayed Co-Flowing Excipients and Active Agent. Journal of Biomedical Nanotechnology, 2011, 7, 782-793.	0.5	9
119	Silica nanospheres entrapped with ultra-small luminescent crystals for protein delivery. Chemical Engineering Journal, 2017, 330, 166-174.	6.6	9
120	Fabrication of stacked-ring netted tubular constructs via 3D template electrohydrodynamic printing. Journal of Materials Science, 2018, 53, 11943-11950.	1.7	9
121	Extraction of triterpenoid compounds from <i>Ganoderma Lucidum </i> spore powder through a dual-mode sonication process. Drug Development and Industrial Pharmacy, 2020, 46, 963-974.	0.9	9
122	Impact of substrate geometry on electrospun fiber deposition and alignment. Journal of Applied Polymer Science, 2017, 134, .	1.3	8
123	Engineering optimisation of commercial facemask formulations capable of improving skin moisturisation. International Journal of Cosmetic Science, 2019, 41, 462-471.	1.2	8
124	Elastic antibacterial membranes comprising particulate laden fibers for wound healing applications. Journal of Applied Polymer Science, 2019, 136, 47105.	1.3	8
125	Electrostatic Jet Engineering of Flexible Composite Pressure Sensors for Physical Applications. ACS Applied Polymer Materials, 2022, 4, 868-878.	2.0	8
126	Stable increased formulation atomization using a multi-tip nozzle device. Drug Delivery and Translational Research, 2018, 8, 1815-1827.	3.0	7

#	Article	IF	Citations
127	Controlled engineering of multifunctional porous structures using tri-needle co-axial electrohydrodynamic flow and sacrificial media. Chemical Engineering Journal, 2022, 429, 132221.	6.6	7
128	Ceramic encapsulation with polymer via co-axial electrohydrodynamic jetting. Journal of Microencapsulation, 2010, 27, 542-551.	1.2	6
129	Electrohydrodynamic printing of silk fibroin. Macromolecular Research, 2013, 21, 339-342.	1.0	6
130	Novel electrically driven direct-writing methods with managed control on in-situ shape and encapsulation polymer forming. International Journal of Material Forming, 2013, 6, 281-288.	0.9	6
131	Generation of ceramic–ceramic layered composite microstructures using electrohydrodynamic co-axial flow. Ceramics International, 2010, 36, 1217-1223.	2.3	5
132	Nano-Bioceramics Production from Razor Shell. Key Engineering Materials, 2011, 493-494, 775-780.	0.4	5
133	Controlled engineering of highly aligned fibrous dosage form matrices for controlled release. Materials Letters, 2018, 232, 134-137.	1.3	5
134	Assessing the ex vivo permeation behaviour of functionalised contact lens coatings engineered using an electrohydrodynamic technique. JPhys Materials, 2019, 2, 014002.	1.8	5
135	Quality by Design Micro-Engineering Optimisation of NSAID-Loaded Electrospun Fibrous Patches. Pharmaceutics, 2020, 12, 2.	2.0	5
136	A Review of Nanoparticle Functionality and Toxicity on the Central Nervous System., 2013, , 313-332.		5
137	Electrohydrodynamic Preparation of Nanomedicines. Current Topics in Medicinal Chemistry, 2015, 15, 2316-2327.	1.0	5
138	Design and evaluation of agarose based buccal films containing zolmitriptan succinate: Application of physical and chemical enhancement approaches. Journal of Drug Delivery Science and Technology, 2022, 69, 103041.	1.4	4
139	Sintering Effect on Boron Based Bioglass Doped Composites of Bovine Hydroxyapatite. Advanced Materials Research, 0, 445, 982-987.	0.3	3
140	Core–shell SrTiO ₃ :Yb ³⁺ ,Er ³⁺ @mSiO ₂ nanoparticles for controlled and monitored doxorubicin delivery. RSC Advances, 2016, 6, 26280-26287.	1.7	3
141	Optimization conversion of chitosan from Ganoderma lucidum spore powder using ultrasoundâ€assisted deacetylation: Influence of processing parameters. Journal of Food Processing and Preservation, 2020, 44, e14297.	0.9	2
142	Engineered mucoadhesive microparticles of formoterol/budesonide for pulmonary administration. European Journal of Pharmaceutical Sciences, 2021, 165, 105955.	1.9	2
143	Polymeric Based Therapeutic Delivery Systems Prepared Using Electrohydrodynamic Processes. Current Pharmaceutical Design, 2016, 22, 2873-2885.	0.9	2
144	Preparation of Nano- and Microstructures For Drug Delivery. AAPS PharmSciTech, 2017, 18, 1427-1427.	1.5	1

#	Article	IF	CITATIONS
145	Effect of Spray-Drying and Electrospraying as Drying Techniques on Lysozyme Characterisation. , 2019,		1
146	(Adv. Eng. Mater. 9/2011). Advanced Engineering Materials, 2011, 13, n/a-n/a.	1.6	0
147	Droplet Formation in a T-Junction Microfluidic Device in the Presence of an Electric Field., 2015,,.		O