
Yongyi Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1850597/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Noble metal-comparable SERS enhancement from semiconducting metal oxides by making oxygen vacancies. Nature Communications, 2015, 6, 7800.	5.8	534
2	Carbonâ€Nanotube Fibers for Wearable Devices and Smart Textiles. Advanced Materials, 2016, 28, 10529-10538.	11.1	310
3	Elastic, Conductive, Polymeric Hydrogels and Sponges. Scientific Reports, 2014, 4, 5792.	1.6	139
4	Asymmetric gel polymer electrolyte with high lithium ion conductivity for dendrite-free lithium metal batteries. Journal of Materials Chemistry A, 2020, 8, 8033-8040.	5.2	93
5	Soft and MRI Compatible Neural Electrodes from Carbon Nanotube Fibers. Nano Letters, 2019, 19, 1577-1586.	4.5	87
6	Direct spinning of high-performance graphene fiber supercapacitor with a three-ply core-sheath structure. Carbon, 2018, 132, 241-248.	5.4	75
7	Bio-Inspired Aggregation Control of Carbon Nanotubes for Ultra-Strong Composites. Scientific Reports, 2015, 5, 11533.	1.6	58
8	Programmable Writing of Graphene Oxide/Reduced Graphene Oxide Fibers for Sensible Networks with <i>in Situ</i> Welded Junctions. ACS Nano, 2014, 8, 4325-4333.	7.3	56
9	Gradient Heating Effect Modulated by Hydrophobic/Hydrophilic Carbon Nanotube Network Structures for Ultrafast Solar Steam Generation. ACS Applied Materials & Interfaces, 2021, 13, 19109-19116.	4.0	55
10	Oxygen Evolution Assisted Fabrication of Highly Loaded Carbon Nanotube/MnO ₂ Hybrid Films for Highâ€Performance Flexible Pseudosupercapacitors. Small, 2016, 12, 2035-2045.	5.2	52
11	Wet-spun PVDF nanofiber separator for direct fabrication of coaxial fiber-shaped supercapacitors. Chemical Engineering Journal, 2020, 400, 125835.	6.6	52
12	One-step wet-spinning assembly of twisting-structured graphene/carbon nanotube fiber supercapacitor. Journal of Energy Chemistry, 2020, 51, 434-441.	7.1	43
13	High performance plasmonic random laser based on nanogaps in bimetallic porous nanowires. Applied Physics Letters, 2013, 103, .	1.5	42
14	Strong and Robust Electrochemical Artificial Muscles by Ionicâ€Liquidâ€inâ€Nanofiberâ€Sheathed Carbon Nanotube Yarns. Small, 2021, 17, e2006181.	5.2	40
15	SWCNT-modulated folding-resistant sandwich-structured graphene film for high-performance electromagnetic interference shielding. Carbon, 2020, 162, 490-496.	5.4	39
16	Flexible visible-light-driven photoelectrochemical biosensor based on molecularly imprinted nanoparticle intercalation-modulated graphene fiber for ultrasensitive urea detection. Carbon, 2020, 157, 457-465.	5.4	36
17	The synergetic relationship between the length and orientation of carbon nanotubes in direct spinning of high-strength carbon nanotube fibers. Materials and Design, 2021, 203, 109557.	3.3	36
18	High-loading Co-doped NiO nanosheets on carbon-welded carbon nanotube framework enabling rapid charge kinetic for enhanced supercapacitor performance. Journal of Energy Chemistry, 2020, 50, 240-247.	7.1	35

Yongyi Zhang

#	Article	IF	CITATIONS
19	Beanâ€Podâ€Inspired 3Dâ€Printed Phase Change Microlattices for Solarâ€Thermal Energy Harvesting and Storage. Small, 2021, 17, e2101093.	5.2	34
20	Transfer of vertically aligned carbon nanotube arrays onto flexible substrates for gecko-inspired dry adhesive application. RSC Advances, 2015, 5, 46749-46759.	1.7	26
21	In-plane mechanical properties of carbon nanotube films fabricated by floating catalyst chemical vapor decomposition. Journal of Materials Science, 2015, 50, 8166-8174.	1.7	25
22	Regulation of multidimensional silver nanostructures for high-performance composite conductive adhesives. Composites Part A: Applied Science and Manufacturing, 2020, 137, 106025.	3.8	25
23	In situ twisting for stabilizing and toughening conductive graphene yarns. Nanoscale, 2017, 9, 11523-11529.	2.8	24
24	3D-Printed Flexible Phase-Change Nonwoven Fabrics toward Multifunctional Clothing. ACS Applied Materials & Interfaces, 2022, 14, 7283-7291.	4.0	24
25	Thin-walled porous carbon tile-packed paper for high-rate Zn-ion capacitor cathode. Chemical Engineering Journal, 2022, 431, 133241.	6.6	23
26	PtFe Alloy Nanoparticles Confined on Carbon Nanotube Networks as Air Cathodes for Flexible and Wearable Energy Devices. ACS Applied Nano Materials, 2019, 2, 7870-7879.	2.4	22
27	Tailoring the structure and nitrogen content of nitrogen-doped carbon nanotubes by water-assisted growth. Carbon, 2014, 69, 247-254.	5.4	21
28	Millisecond tension-annealing for enhancing carbon nanotube fibers. Nanoscale, 2019, 11, 13909-13916.	2.8	21
29	Nanoparticle intercalation-modulated stretchable conductive graphene fibers with combined photoelectric properties. Carbon, 2019, 141, 218-225.	5.4	21
30	Fast water transport reversible CNT/PVA hybrid hydrogels with highly environmental tolerance for multifunctional sport headband. Composites Part B: Engineering, 2021, 211, 108661.	5.9	21
31	Hydrothermal deposition of a zinc oxide nanorod array on a carbon nanotube film as a piezoelectric generator. RSC Advances, 2014, 4, 43772-43777.	1.7	20
32	A new insight into the rechargeable mechanism of manganese dioxide based symmetric supercapacitors. RSC Advances, 2017, 7, 8561-8566.	1.7	19
33	Core-sheath 3D printing of highly conductive and MoS2-loaded electrode with pseudocapacitive behavior. Chemical Engineering Journal, 2021, 423, 130304.	6.6	19
34	A Grapheneâ€Based Coaxial Fibrous Photofuel Cell Powered by Mine Gas. Advanced Functional Materials, 2019, 29, 1906813.	7.8	18
35	Carbon Nanotube Network-Based Solar-Thermal Water Evaporator and Thermoelectric Module for Electricity Generation. ACS Applied Nano Materials, 2021, 4, 8906-8912.	2.4	18
36	Modulusâ€Tailorable, Stretchable, and Biocompatible Carbonene Fiber for Adaptive Neural Electrode. Advanced Functional Materials, 2022, 32, 2107360.	7.8	15

Yongyi Zhang

#	Article	IF	CITATIONS
37	Flexible and smart fibers decorated with Ag nanoflowers for highly active surfaceâ€enhanced Raman scattering detection. Journal of Raman Spectroscopy, 2019, 50, 1468-1476.	1.2	14
38	All-solid-state supercapacitors using a highly-conductive neutral gum electrolyte. RSC Advances, 2019, 9, 8169-8174.	1.7	14
39	Superflexible yet robust functionalized carbon nanotube fiber reinforced sulphoaluminate cement-based grouting materials with excellent mechanical, electrical and thermal properties. Construction and Building Materials, 2022, 328, 126999.	3.2	14
40	Robust, amphiphobic and super-buoyant CNT foams promising for self-floating functional platforms. Carbon, 2020, 168, 439-447.	5.4	12
41	Kinetic enhanced bio-derived porous carbon tile laminate paper for ultrahigh-rate supercapacitors. Journal of Power Sources, 2022, 525, 231148.	4.0	12
42	Aligned carbon nanotube fibers for fiber-shaped solar cells, supercapacitors and batteries. RSC Advances, 2021, 11, 6628-6643.	1.7	10
43	Spontaneous Salt-Preventing Solar–Thermal Water Evaporator with a High Evaporation Efficiency through Dual-Mode Water Transfer. ACS Applied Materials & Interfaces, 2022, 14, 15549-15557.	4.0	10
44	Length-dependent carbon nanotube film structures and mechanical properties. Nanotechnology, 2021, 32, 265702.	1.3	9
45	Self-Assembled Bipolar Metals with Hollow Carbon Spheres for High-Performance Li–S Battery Cathodes. ACS Applied Energy Materials, 2021, 4, 12745-12753.	2.5	9
46	Rational design of fast recoverable shape-memory photoelectric spring in response to tiny deformation for monitoring underwater microvibration. Composites Part B: Engineering, 2020, 202, 108402.	5.9	7
47	Integrated coaxial graphene-based yarn with multidimensional architecture for self-powered photoelectrochemical methane sensor. Sensors and Actuators B: Chemical, 2022, 365, 131965.	4.0	7
48	ZnS nanolayer coated hollow carbon spheres with enhanced rate and cycling performance for Li-S batteries. Science China Technological Sciences, 2022, 65, 272-281.	2.0	6
49	High-strength carbon nanotube fibers with near 100% purity acquired via isothermal vacuum annealing. Diamond and Related Materials, 2021, 116, 108391.	1.8	5
50	Carbon-Based Fiber Materials as Implantable Depth Neural Electrodes. Frontiers in Neuroscience, 2021, 15, 771980.	1.4	5
51	Highly aligned welding of ultrathin graphene layer to robust carbon nanotube film for significantly enhanced thermal conductivity. Nanotechnology, 2021, 32, 495710.	1.3	4
52	Sieve-Like CNT Film Coupled with TiO2 Nanowire for High-Performance Continuous-Flow Photodegradation of Rhodamine B under Visible Light Irradiation. Nanomaterials, 2021, 11, 1335.	1.9	3
53	Revolution-assisted direct writing of highly controllable spiral graphene fibers with ultrasensitive photoelectric response. Composites Communications, 2021, 26, 100783.	3.3	3
54	Direct writing of graphene-based fibers: Multilevel assembly and functional properties. Carbon, 2022, 192, 109-122.	5.4	2

#	Article	IF	CITATIONS
55	A modified spin-casting approach for scalable preparation of ultra-thick reduced graphene oxide films with high thermal conductivity. Materials Research Express, 2022, 9, 036405.	0.8	1