Ruchir Priyadarshi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1850482/publications.pdf

Version: 2024-02-01

40 papers

2,567 citations

236925 25 h-index 330143 37 g-index

40 all docs 40 docs citations

40 times ranked

 $\begin{array}{c} 1747 \\ \text{citing authors} \end{array}$

#	Article	IF	Citations
1	Chitosan-based biodegradable functional films for food packaging applications. Innovative Food Science and Emerging Technologies, 2020, 62, 102346.	5.6	318
2	Chitosan films incorporated with Apricot (Prunus armeniaca) kernel essential oil as active food packaging material. Food Hydrocolloids, 2018, 85, 158-166.	10.7	221
3	Chitosan film incorporated with citric acid and glycerol as an active packaging material for extension of green chilli shelf life. Carbohydrate Polymers, 2018, 195, 329-338.	10.2	206
4	pH-responsive color indicator films based on methylcellulose/chitosan nanofiber and barberry anthocyanins for real-time monitoring of meat freshness. International Journal of Biological Macromolecules, 2021, 166, 741-750.	7. 5	176
5	Gelatin-based functional films integrated with grapefruit seed extract and TiO2 for active food packaging applications. Food Hydrocolloids, 2021, 112, 106314.	10.7	150
6	Recent Advances in Intelligent Food Packaging Applications Using Natural Food Colorants. ACS Food Science & Technology, 2021, 1, 124-138.	2.7	120
7	Effect of sulfur nanoparticles on properties of alginate-based films for active food packaging applications. Food Hydrocolloids, 2021, 110, 106155.	10.7	110
8	Pectin/pullulan blend films for food packaging: Effect of blending ratio. Food Chemistry, 2021, 347, 129022.	8.2	109
9	Curcumin and its uses in active and smart food packaging applications - a comprehensive review. Food Chemistry, 2022, 375, 131885.	8.2	96
10	pH-responsive prodrug nanoparticles based on xylan-curcumin conjugate for the efficient delivery of curcumin in cancer therapy. Carbohydrate Polymers, 2018, 188, 252-259.	10.2	90
11	Effect of Varying Filler Concentration on Zinc Oxide Nanoparticle Embedded Chitosan Films as Potential Food Packaging Material. Journal of Polymers and the Environment, 2017, 25, 1087-1098.	5.0	89
12	CMC and CNF-based intelligent pH-responsive color indicator films integrated with shikonin to monitor fish freshness. Food Control, 2021, 126, 108046.	5.5	76
13	Carboxymethyl cellulose-based multifunctional film combined with zinc oxide nanoparticles and grape seed extract for the preservation of high-fat meat products. Sustainable Materials and Technologies, 2021, 29, e00325.	3.3	66
14	Cellulose nanofiber-based coating film integrated with nitrogen-functionalized carbon dots for active packaging applications of fresh fruit. Postharvest Biology and Technology, 2022, 186, 111845.	6.0	63
15	Redox responsive xylan-SS-curcumin prodrug nanoparticles for dual drug delivery in cancer therapy. Materials Science and Engineering C, 2020, 107, 110356.	7.3	61
16	Antioxidant pectin/pullulan edible coating incorporated with Vitis vinifera grape seed extract for extending the shelf life of peanuts. Postharvest Biology and Technology, 2022, 183, 111740.	6.0	60
17	Development of Multifunctional Pullulan/Chitosan-Based Composite Films Reinforced with ZnO Nanoparticles and Propolis for Meat Packaging Applications. Foods, 2021, 10, 2789.	4.3	54
18	Green and facile synthesis of carboxymethylcellulose/ZnO nanocomposite hydrogels crosslinked with Zn2+ ions. International Journal of Biological Macromolecules, 2020, 162, 229-235.	7.5	51

#	Article	IF	Citations
19	Gelatin/agar-based multifunctional film integrated with copper-doped zinc oxide nanoparticles and clove essential oil Pickering emulsion for enhancing the shelf life of pork meat. Food Research International, 2022, 160, 111690.	6.2	50
20	Sulfur Quantum Dots as Fillers in Gelatin/Agar-Based Functional Food Packaging Films. ACS Applied Nano Materials, 2021, 4, 14292-14302.	5.0	47
21	Nanoporous Sodium Carboxymethyl Cellulose-g-poly (Sodium Acrylate)/FeCl3 Hydrogel Beads: Synthesis and Characterization. Gels, 2020, 6, 49.	4.5	42
22	Antimicrobial nanofillers reinforced biopolymer composite films for active food packaging applications - A review. Sustainable Materials and Technologies, 2022, 32, e00353.	3.3	40
23	Preparation and characterization of B, S, and N-doped glucose carbon dots: Antibacterial, antifungal, and antioxidant activity. Sustainable Materials and Technologies, 2022, 32, e00397.	3.3	35
24	Alginate-based multifunctional films incorporated with sulfur quantum dots for active packaging applications. Colloids and Surfaces B: Biointerfaces, 2022, 215, 112519.	5.0	35
25	Advances in pullulan utilization for sustainable applications in food packaging and preservation: A mini-review. Trends in Food Science and Technology, 2022, 125, 43-53.	15.1	32
26	Carrageenan-Based Antimicrobial Films Integrated with Sulfur-Coated Iron Oxide Nanoparticles (Fe ₃ O ₄ @SNP). ACS Applied Polymer Materials, 2021, 3, 4913-4923.	4.4	25
27	Enhanced functionality of green synthesized sulfur nanoparticles using kiwifruit (Actinidia deliciosa) peel polyphenols as capping agents. Journal of Nanostructure in Chemistry, 2022, 12, 389-399.	9.1	23
28	Titania Nanotubes Decorated with Cu(I) and Cu(II) Oxides: Antibacterial and Ethylene Scavenging Functions To Extend the Shelf Life of Bananas. ACS Sustainable Chemistry and Engineering, 2021, 9, 6832-6840.	6.7	21
29	Development of novel cross-linked carboxymethyl cellulose/poly(potassium 1-hydroxy acrylate): synthesis, characterization and properties. Polymer Bulletin, 2020, 77, 4555-4570.	3.3	18
30	<l>Cynodon dactylon</l> Leaf Extract Assisted Green Synthesis of Silver Nanoparticles and Their Anti-Microbial Activity. Advanced Science, Engineering and Medicine, 2013, 5, 858-863.	0.3	14
31	Antiviral Biodegradable Food Packaging and Edible Coating Materials in the COVID-19 Era: A Mini-Review. Coatings, 2022, 12, 577.	2.6	14
32	Silver ion loaded 3-aminopropyl trimethoxysilane -modified Fe3O4 nanoparticles for the fabrication of carrageenan-based active packaging films. Colloids and Surfaces B: Biointerfaces, 2021, 208, 112085.	5.0	13
33	Pine Needle (Pinus densiflora) Extract-Mediated Synthesis of Silver Nanoparticles and the Preparation of Carrageenan-Based Antimicrobial Packaging Films. Journal of Nanomaterials, 2022, 2022, 1-15.	2.7	11
34	Effect of carbon based fillers on properties of Chitosan/PVA/βTCP based composite scaffold for bone tissue engineering. Materials Today: Proceedings, 2019, 15, 173-182.	1.8	10
35	Poly(vinyl pyrrolidone)-mediated synthesis of silver nanowires decorated with silver nanospheres and their antimicrobial activity. Bulletin of Materials Science, 2019, 42, 1.	1.7	9
36	Comparative analysis of TiO ₂ and Ag nanoparticles on xylan/chitosan conjugate matrix for wound healing application. International Journal of Polymeric Materials and Polymeric Biomaterials, 2022, 71, 376-385.	3.4	7

#	Article	IF	CITATIONS
37	Modified atmosphere packaging development. , 2020, , 261-280.		4
38	Stimuli-Responsive Nano-Drug Delivery Systems for Cancer Therapy. Nanotechnology in the Life Sciences, 2020, , 151-162.	0.6	1
39	Activating de novo triacylglycerol synthesis in oleaginous yeast for improved bio-diesel quality. WEENTECH Proceedings in Energy, 2018, 4, 16-24.	0.0	O
40	Polymer–Drug Conjugates as Drug Delivery Systems. , 2019, , 61-75.		0