Zhong Jin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1849981/publications.pdf Version: 2024-02-01

ZHONG LIN

#	Article	IF	CITATIONS
1	All-Inorganic Perovskite Solar Cells. Journal of the American Chemical Society, 2016, 138, 15829-15832.	6.6	899
2	Hydrophilic Hierarchical Nitrogenâ€Doped Carbon Nanocages for Ultrahigh Supercapacitive Performance. Advanced Materials, 2015, 27, 3541-3545.	11.1	680
3	Progress and Perspective of Electrocatalytic CO ₂ Reduction for Renewable Carbonaceous Fuels and Chemicals. Advanced Science, 2018, 5, 1700275.	5.6	638
4	Large-Scale Growth and Characterizations of Nitrogen-Doped Monolayer Graphene Sheets. ACS Nano, 2011, 5, 4112-4117.	7.3	590
5	Fabrication of Ultralong and Electrically Uniform Single-Walled Carbon Nanotubes on Clean Substrates. Nano Letters, 2009, 9, 3137-3141.	4.5	516
6	Understanding and controlling the substrate effect on graphene electron-transfer chemistry via reactivity imprint lithography. Nature Chemistry, 2012, 4, 724-732.	6.6	463
7	Self-Templated Formation of Interlaced Carbon Nanotubes Threaded Hollow Co ₃ S ₄ Nanoboxes for High-Rate and Heat-Resistant Lithium–Sulfur Batteries. Journal of the American Chemical Society, 2017, 139, 12710-12715.	6.6	456
8	CsPb _{0.9} Sn _{0.1} IBr ₂ Based All-Inorganic Perovskite Solar Cells with Exceptional Efficiency and Stability. Journal of the American Chemical Society, 2017, 139, 14009-14012.	6.6	447
9	Copper Catalyzing Growth of Single-Walled Carbon Nanotubes on Substrates. Nano Letters, 2006, 6, 2987-2990.	4.5	350
10	Bi- and trilayer graphene solutions. Nature Nanotechnology, 2011, 6, 439-445.	15.6	337
11	Metallic and polar Co 9 S 8 inlaid carbon hollow nanopolyhedra as efficient polysulfide mediator for lithiumâ^'sulfur batteries. Nano Energy, 2017, 38, 239-248.	8.2	314
12	Breakdown in the Wetting Transparency of Graphene. Physical Review Letters, 2012, 109, 176101.	2.9	313
13	Oxygen Vacancy Engineering Promoted Photocatalytic Ammonia Synthesis on Ultrathin Two-Dimensional Bismuth Oxybromide Nanosheets. Nano Letters, 2018, 18, 7372-7377.	4.5	308
14	Review on photocatalytic and electrocatalytic artificial nitrogen fixation for ammonia synthesis at mild conditions: Advances, challenges and perspectives. Nano Research, 2019, 12, 1229-1249.	5.8	301
15	Rational Design of Hybrid Graphene Films for High-Performance Transparent Electrodes. ACS Nano, 2011, 5, 6472-6479.	7.3	290
16	Self-assembled ultrathin NiCo2S4 nanoflakes grown on Ni foam as high-performance flexible electrodes for hydrogen evolution reaction in alkaline solution. Nano Energy, 2016, 24, 139-147.	8.2	282
17	Nitrogen-doped graphene: Synthesis, characterizations and energy applications. Journal of Energy Chemistry, 2018, 27, 146-160.	7.1	254
18	Emerging non-lithium ion batteries. Energy Storage Materials, 2016, 4, 103-129.	9.5	252

#	Article	IF	CITATIONS
19	Liquid-phase exfoliated ultrathin Bi nanosheets: Uncovering the origins of enhanced electrocatalytic CO2 reduction on two-dimensional metal nanostructure. Nano Energy, 2018, 53, 808-816.	8.2	247
20	Tuning On–Off Current Ratio and Field-Effect Mobility in a MoS ₂ –Graphene Heterostructure <i>via</i> Schottky Barrier Modulation. ACS Nano, 2014, 8, 5790-5798.	7.3	240
21	The effects of Al substitution and partial dissolution on ultrathin NiFeAl trinary layered double hydroxide nanosheets for oxygen evolution reaction in alkaline solution. Nano Energy, 2017, 35, 350-357.	8.2	237
22	Nitrogen-Doped Carbon Nanomaterials as Highly Active and Specific Peroxidase Mimics. Chemistry of Materials, 2018, 30, 6431-6439.	3.2	236
23	Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene. Nano Letters, 2012, 12, 3711-3715.	4.5	235
24	Highly Efficient Retention of Polysulfides in "Sea Urchin―Like Carbon Nanotube/Nanopolyhedra Superstructures as Cathode Material for Ultralong-Life Lithium–Sulfur Batteries. Nano Letters, 2017, 17, 437-444.	4.5	223
25	Strong Capillarity, Chemisorption, and Electrocatalytic Capability of Crisscrossed Nanostraws Enabled Flexible, High-Rate, and Long-Cycling Lithium–Sulfur Batteries. ACS Nano, 2018, 12, 4868-4876.	7.3	222
26	Cerium Oxide Nanocrystal Embedded Bimodal Micromesoporous Nitrogen-Rich Carbon Nanospheres as Effective Sulfur Host for Lithium–Sulfur Batteries. ACS Nano, 2017, 11, 7274-7283.	7.3	213
27	Porous-Shell Vanadium Nitride Nanobubbles with Ultrahigh Areal Sulfur Loading for High-Capacity and Long-Life Lithium–Sulfur Batteries. Nano Letters, 2017, 17, 7839-7846.	4.5	206
28	eg occupancy as an effective descriptor for the catalytic activity of perovskite oxide-based peroxidase mimics. Nature Communications, 2019, 10, 704.	5.8	199
29	Walnutâ€Like Multicore–Shell MnO Encapsulated Nitrogenâ€Rich Carbon Nanocapsules as Anode Material for Longâ€Cycling and Softâ€Packed Lithiumâ€ŀon Batteries. Advanced Functional Materials, 2018, 28, 1800003.	7.8	191
30	Ultralow Feeding Gas Flow Guiding Growth of Large-Scale Horizontally Aligned Single-Walled Carbon Nanotube Arrays. Nano Letters, 2007, 7, 2073-2079.	4.5	189
31	Highly Branched VS ₄ Nanodendrites with 1D Atomicâ€Chain Structure as a Promising Cathode Material for Long ycling Magnesium Batteries. Advanced Materials, 2018, 30, e1802563.	11.1	187
32	Decoration, Migration, and Aggregation of Palladium Nanoparticles on Graphene Sheets. Chemistry of Materials, 2010, 22, 5695-5699.	3.2	186
33	Click Chemistry on Solution-Dispersed Graphene and Monolayer CVD Graphene. Chemistry of Materials, 2011, 23, 3362-3370.	3.2	169
34	lonic liquid-immobilized polymer gel electrolyte with self-healing capability, high ionic conductivity and heat resistance for dendrite-free lithium metal batteries. Nano Energy, 2018, 54, 17-25.	8.2	168
35	Allâ€Inorganic Halide Perovskites for Optoelectronics: Progress and Prospects. Solar Rrl, 2017, 1, 1700086	3.1	167
36	In Situ Thermal Synthesis of Inlaid Ultrathin MoS ₂ /Graphene Nanosheets as Electrocatalysts for the Hydrogen Evolution Reaction. Chemistry of Materials, 2016, 28, 5733-5742.	3.2	166

#	Article	IF	CITATIONS
37	Efficient photocatalytic nitrogen fixation under ambient conditions enabled by the heterojunctions of n-type Bi ₂ MoO ₆ and oxygen-vacancy-rich p-type BiOBr. Nanoscale, 2019, 11, 10439-10445.	2.8	160
38	Biomacromolecules enabled dendrite-free lithium metal battery and its origin revealed by cryo-electron microscopy. Nature Communications, 2020, 11, 488.	5.8	158
39	Metallized DNA nanolithography for encoding and transferring spatial information for graphene patterning. Nature Communications, 2013, 4, 1663.	5.8	155
40	Pine needle-derived microporous nitrogen-doped carbon frameworks exhibit high performances in electrocatalytic hydrogen evolution reaction and supercapacitors. Nanoscale, 2017, 9, 1237-1243.	2.8	154
41	MoS ₂ â€Based Allâ€Purpose Fibrous Electrode and Selfâ€Powering Energy Fiber for Efficient Energy Harvesting and Storage. Advanced Energy Materials, 2017, 7, 1601208.	10.2	139
42	Molecular Design of Fused-Ring Phenazine Derivatives for Long-Cycling Alkaline Redox Flow Batteries. ACS Energy Letters, 2020, 5, 411-417.	8.8	136
43	Oneâ€Step Synthesis of 2â€Ethylhexylamine Pillared Vanadium Disulfide Nanoflowers with Ultralarge Interlayer Spacing for Highâ€Performance Magnesium Storage. Advanced Energy Materials, 2019, 9, 1900145.	10.2	131
44	Layered and scrolled nanocomposites with aligned semi-infinite graphene inclusions at the platelet limit. Science, 2016, 353, 364-367.	6.0	125
45	Towards artificial photosynthesis: Sustainable hydrogen utilization for photocatalytic reduction of CO2 to high-value renewable fuels. Chemical Engineering Journal, 2020, 402, 126184.	6.6	123
46	High energy density hybrid lithium-ion capacitor enabled by Co3ZnC@N-doped carbon nanopolyhedra anode and microporous carbon cathode. Energy Storage Materials, 2018, 14, 246-252.	9.5	120
47	Versatile Electronic Skins for Motion Detection of Joints Enabled by Aligned Fewâ€Walled Carbon Nanotubes in Flexible Polymer Composites. Advanced Functional Materials, 2017, 27, 1606604.	7.8	119
48	Atomic Substitution Enabled Synthesis of Vacancy-Rich Two-Dimensional Black TiO _{2–<i>x</i>} Nanoflakes for High-Performance Rechargeable Magnesium Batteries. ACS Nano, 2018, 12, 12492-12502.	7.3	116
49	Covalent Organic Frameworks: Emerging Organic Solid Materials for Energy and Electrochemical Applications. ACS Applied Materials & amp; Interfaces, 2020, 12, 27821-27852.	4.0	116
50	How Catalysts Affect the Growth of Singleâ€Walled Carbon Nanotubes on Substrates. Advanced Materials, 2010, 22, 1508-1515.	11.1	112
51	Multi-yolk-shell copper oxide@carbon octahedra as high-stability anodes for lithium-ion batteries. Nano Energy, 2016, 20, 305-314.	8.2	107
52	High-Performance Alkaline Organic Redox Flow Batteries Based on 2-Hydroxy-3-carboxy-1,4-naphthoquinone. ACS Energy Letters, 2018, 3, 2404-2409.	8.8	104
53	An all-inorganic perovskite solar capacitor for efficient and stable spontaneous photocharging. Nano Energy, 2018, 52, 239-245.	8.2	100
54	Nanocapillarity and Nanoconfinement Effects of Pipet-like Bismuth@Carbon Nanotubes for Highly Efficient Electrocatalytic CO ₂ Reduction. Nano Letters, 2021, 21, 2650-2657.	4.5	95

#	Article	IF	CITATIONS
55	Shape-Controlled Synthesis of CdS Nanocrystals in Mixed Solvents. Crystal Growth and Design, 2005, 5, 1801-1806.	1.4	93
56	Mechanically Assisted Exfoliation and Functionalization of Thermally Converted Graphene Sheets. Chemistry of Materials, 2009, 21, 3045-3047.	3.2	92
57	All-polymer particulate slurry batteries. Nature Communications, 2019, 10, 2513.	5.8	91
58	Engineering hollow mesoporous silica nanocontainers with molecular switches for continuous self-healing anticorrosion coating. Journal of Materials Chemistry A, 2015, 3, 9510-9516.	5.2	89
59	Integrated perovskite solar capacitors with high energy conversion efficiency and fast photo-charging rate. Journal of Materials Chemistry A, 2018, 6, 2047-2052.	5.2	85
60	Nitrogen-Doped Carbon Nanotube Forests Planted on Cobalt Nanoflowers as Polysulfide Mediator for Ultralow Self-Discharge and High Areal-Capacity Lithium–Sulfur Batteries. Nano Letters, 2018, 18, 7949-7954.	4.5	85
61	Graphene–Ni–α-MnO2 and –Cu–α-MnO2 nanowire blends as highly active non-precious metal catalysts for the oxygen reduction reaction. Chemical Communications, 2012, 48, 7931.	2.2	84
62	Ï€-Conjugated polyimide-based organic cathodes with extremely-long cycling life for rechargeable magnesium batteries. Energy Storage Materials, 2020, 26, 494-502.	9.5	82
63	Extended Metal–Organic Frameworks on Diverse Supports as Electrode Nanomaterials for Electrochemical Energy Storage. ACS Applied Nano Materials, 2020, 3, 3964-3990.	2.4	80
64	Heterointerface engineering of trilayer-shelled ultrathin MoS ₂ /MoP/N-doped carbon hollow nanobubbles for efficient hydrogen evolution. Journal of Materials Chemistry A, 2018, 6, 24783-24792.	5.2	79
65	Recent advances in anode materials for potassium-ion batteries: A review. Nano Research, 2021, 14, 4442-4470.	5.8	76
66	Solution synthesis and phase control of inorganic perovskites for high-performance optoelectronic devices. Nanoscale, 2017, 9, 11841-11845.	2.8	75
67	Rationalâ€Designed Principles for Electrochemical and Photoelectrochemical Upgrading of CO ₂ to Valueâ€Added Chemicals. Advanced Science, 2022, 9, e2105204.	5.6	75
68	Dendrite-Free and Stable Lithium Metal Anodes Enabled by an Antimony-Based Lithiophilic Interphase. Chemistry of Materials, 2019, 31, 7565-7573.	3.2	73
69	Interfacial Reduction Nucleation of Noble Metal Nanodots on Redox-Active Metal–Organic Frameworks for High-Efficiency Electrocatalytic Conversion of Nitrate to Ammonia. Nano Letters, 2022, 22, 2529-2537.	4.5	72
70	Controllable Solid-Phase Fabrication of an Fe ₂ O ₃ /Fe ₅ C ₂ /Fe–N–C Electrocatalyst toward Optimizing the Oxygen Reduction Reaction in Zinc–Air Batteries. Nano Letters, 2022, 22, 4879-4887.	4.5	72
71	Nanoporous and lyophilic battery separator from regenerated eggshell membrane with effective suppression of dendritic lithium growth. Energy Storage Materials, 2018, 14, 258-266.	9.5	69
72	Hybrid Mg/Li-ion batteries enabled by Mg2+/Li+ co-intercalation in VS4 nanodendrites. Energy Storage Materials, 2019, 23, 741-748.	9.5	69

#	Article	IF	CITATIONS
73	Resistive Switching in Nanogap Systems on SiO ₂ Substrates. Small, 2009, 5, 2910-2915.	5.2	68
74	Nano-Engineered Spacing in Graphene Sheets for Hydrogen Storage. Chemistry of Materials, 2011, 23, 923-925.	3.2	68
75	Subatomic deformation driven by vertical piezoelectricity from CdS ultrathin films. Science Advances, 2016, 2, e1600209.	4.7	67
76	High-performance Li-ion capacitor based on black-TiO2-x/graphene aerogel anode and biomass-derived microporous carbon cathode. Nano Research, 2019, 12, 1713-1719.	5.8	64
77	Disorder Imposed Limits of Mono- and Bilayer Graphene Electronic Modification Using Covalent Chemistry. Nano Letters, 2013, 13, 809-817.	4.5	62
78	Arsenene: A Potential Therapeutic Agent for Acute Promyelocytic Leukaemia Cells by Acting on Nuclear Proteins. Angewandte Chemie - International Edition, 2020, 59, 5151-5158.	7.2	62
79	Well-designed Te/SnS2/Ag artificial nanoleaves for enabling and enhancing visible-light driven overall splitting of pure water. Nano Energy, 2017, 39, 539-545.	8.2	61
80	Cobalt-Iron Oxide Nanoarrays Supported on Carbon Fiber Paper with High Stability for Electrochemical Oxygen Evolution at Large Current Densities. ACS Applied Materials & Interfaces, 2018, 10, 39809-39818.	4.0	60
81	A Review on Recent Advances for Boosting Initial Coulombic Efficiency of Silicon Anodic Lithium Ion batteries. Small, 2022, 18, e2102894.	5.2	60
82	Electrochemical Mg ²⁺ Displacement Driven Reversible Copper Extrusion/Intrusion Reactions for Highâ€Rate Rechargeable Magnesium Batteries. Advanced Functional Materials, 2021, 31, 2009394.	7.8	59
83	Design of a wearable and shape-memory fibriform sensor for the detection of multimodal deformation. Nanoscale, 2018, 10, 118-123.	2.8	58
84	Two-Terminal Nonvolatile Memories Based on Single-Walled Carbon Nanotubes. ACS Nano, 2009, 3, 4122-4126.	7.3	57
85	Hierarchical porous nitrogen-rich carbon nanospheres with high and durable capabilities for lithium and sodium storage. Nanoscale, 2016, 8, 17911-17918.	2.8	57
86	Flexible devices: from materials, architectures to applications. Journal of Semiconductors, 2018, 39, 011010.	2.0	56
87	Co _x Fe _y N nanoparticles decorated on graphene sheets as high-performance electrocatalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 12489-12497.	5.2	56
88	Reversible Redox Chemistry in Pyrrolidiniumâ€Based TEMPO Radical and Extended Viologen for Highâ€Voltage and Longâ€Life Aqueous Redox Flow Batteries. Advanced Energy Materials, 2022, 12, .	10.2	56
89	Recycling PM2.5 carbon nanoparticles generated by diesel vehicles for supercapacitors and oxygen reduction reaction. Nano Energy, 2017, 33, 229-237.	8.2	55
90	Surface plasmon resonance enhanced direct Z-scheme TiO ₂ /ZnTe/Au nanocorncob heterojunctions for efficient photocatalytic overall water splitting. Nanoscale, 2019, 11, 9053-9060.	2.8	55

#	Article	IF	CITATIONS
91	Nitrogenâ€Doped Singleâ€Walled Carbon Nanotubes Grown on Substrates: Evidence for Framework Doping and Their Enhanced Properties. Advanced Functional Materials, 2011, 21, 986-992.	7.8	54
92	Electronic and geometric structure engineering of bicontinuous porous Ag–Cu nanoarchitectures for realizing selectivity-tunable electrochemical CO2 reduction. Nano Energy, 2020, 73, 104796.	8.2	54
93	Understanding Surfactant/Graphene Interactions Using a Graphene Field Effect Transistor: Relating Molecular Structure to Hysteresis and Carrier Mobility. Langmuir, 2012, 28, 8579-8586.	1.6	53
94	Hierarchical Ternary Carbide Nanoparticle/Carbon Nanotube-Inserted N-Doped Carbon Concave-Polyhedrons for Efficient Lithium and Sodium Storage. ACS Applied Materials & Interfaces, 2016, 8, 26834-26841.	4.0	52
95	One-step fabrication of large-area ultrathin MoS ₂ nanofilms with high catalytic activity for photovoltaic devices. Nanoscale, 2016, 8, 16017-16025.	2.8	51
96	Controlled growth and photoconductive properties of hexagonal SnS2 nanoflakes with mesa-shaped atomic steps. Nano Research, 2017, 10, 1434-1447.	5.8	51
97	Highly efficient overall water splitting driven by all-inorganic perovskite solar cells and promoted by bifunctional bimetallic phosphide nanowire arrays. Journal of Materials Chemistry A, 2018, 6, 20076-20082.	5.2	51
98	Superstretchable, thermostable and ultrahigh-loading lithium–sulfur batteries based on nanostructural gel cathodes and gel electrolytes. Nano Energy, 2021, 80, 105510.	8.2	51
99	Templateâ€Sacrificed Hot Fusion Construction and Nanoseed Modification of 3D Porous Copper Nanoscaffold Host for Stableâ€Cycling Lithium Metal Anodes. Advanced Functional Materials, 2021, 31, 2102735.	7.8	51
100	A Structure–Function Relationship for the Optical Modulation of Phenyl Boronic Acid-Grafted, Polyethylene Glycol-Wrapped Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2012, 134, 17620-17627.	6.6	50
101	High-Performance Li–Se Batteries Enabled by Selenium Storage in Bottom-Up Synthesized Nitrogen-Doped Carbon Scaffolds. ACS Applied Materials & Interfaces, 2017, 9, 25232-25238.	4.0	50
102	Li ₃ V ₂ (PO ₄) ₃ encapsulated flexible free-standing nanofabric cathodes for fast charging and long life-cycle lithium-ion batteries. Nanoscale, 2016, 8, 7408-7415.	2.8	49
103	Near-Infrared-Responsive Photo-Driven Nitrogen Fixation Enabled by Oxygen Vacancies and Sulfur Doping in Black TiO _{2–<i>x</i>} S _{<i>y</i>} Nanoplatelets. ACS Applied Materials & Interfaces, 2021, 13, 4975-4983.	4.0	48
104	Solution-Phase Synthesis of Heteroatom-Substituted Carbon Scaffolds for Hydrogen Storage. Journal of the American Chemical Society, 2010, 132, 15246-15251.	6.6	47
105	Interface Engineering of Anchored Ultrathin TiO ₂ /MoS ₂ Heterolayers for Highly-Efficient Electrochemical Hydrogen Production. ACS Applied Materials & Interfaces, 2018, 10, 6084-6089.	4.0	47
106	Circular polarization dependent cyclotron resonance in large-area graphene in ultrahigh magnetic fields. Physical Review B, 2012, 85, .	1.1	46
107	Stabilizing lithium metal anode by molecular beam epitaxy grown uniform and ultrathin bismuth film. Nano Energy, 2020, 76, 105068.	8.2	46
108	Highâ€Performance Lithiumâ€lon Capacitors Based on Porosityâ€Regulated Zirconium Metalâ^'Organic Frameworks. Small. 2021. 17. e2005209.	5.2	46

#	Article	IF	CITATIONS
109	In situ Synthesis of Polymer-Modified Mesoporous Carbon CMK-3 Composites for CO ₂ Sequestration. ACS Applied Materials & Interfaces, 2011, 3, 4782-4786.	4.0	45
110	Ultrahigh rate capability and ultralong cycling stability of sodium-ion batteries enabled by wrinkled black titania nanosheets with abundant oxygen vacancies. Nano Energy, 2018, 53, 91-96.	8.2	44
111	Rh/Al Nanoantenna Photothermal Catalyst for Wide-Spectrum Solar-Driven CO ₂ Methanation with Nearly 100% Selectivity. Nano Letters, 2021, 21, 8824-8830.	4.5	43
112	Quasi-Phthalocyanine Conjugated Covalent Organic Frameworks with Nitrogen-Coordinated Transition Metal Centers for High-Efficiency Electrocatalytic Ammonia Synthesis. Nano Letters, 2022, 22, 372-379.	4.5	43
113	Direct Preparation and Patterning of Iron Oxide Nanoparticles via Microcontact Printing on Silicon Wafers for the Growth of Single-Walled Carbon Nanotubes. Chemistry of Materials, 2006, 18, 4109-4114.	3.2	42
114	Bottom-up synthesis of nitrogen-doped porous carbon scaffolds for lithium and sodium storage. Nanoscale, 2017, 9, 1972-1977.	2.8	42
115	N-alkyl-carboxylate-functionalized anthraquinone for long-cycling aqueous redox flow batteries. Energy Storage Materials, 2021, 36, 417-426.	9.5	42
116	Redox-Active Covalent Organic Frameworks with Nickel–Bis(dithiolene) Units as Guiding Layers for High-Performance Lithium Metal Batteries. Journal of the American Chemical Society, 2022, 144, 8267-8277.	6.6	42
117	van der Waals Epitaxial Growth and Interfacial Passivation of Two-Dimensional Single-Crystalline Few-Layer Gray Arsenic Nanoflakes. Chemistry of Materials, 2019, 31, 4524-4535.	3.2	41
118	Determination of complex optical constants and photovoltaic device design of all-inorganic CsPbBr ₃ perovskite thin films. Optics Express, 2020, 28, 15706.	1.7	40
119	Three-dimensional spongy framework as superlyophilic, strongly absorbing, and electrocatalytic polysulfide reservoir layer for high-rate and long-cycling lithium-sulfur batteries. Nano Research, 2018, 11, 6436-6446.	5.8	38
120	Crystalline Modulation Engineering of Ru Nanoclusters for Boosting Ammonia Electrosynthesis from Dinitrogen or Nitrate. ACS Applied Materials & Interfaces, 2022, 14, 17470-17478.	4.0	37
121	Batch-Scale Synthesis of Nanoparticle-Agminated Three-Dimensional Porous Cu@Cu ₂ O Microspheres for Highly Selective Electrocatalysis of Nitrate to Ammonia. Environmental Science & Technology, 2022, 56, 10299-10307.	4.6	37
122	Direct Growth of Single-Walled Carbon Nanotubes without Metallic Residues by Using Lead as a Catalyst. Chemistry of Materials, 2008, 20, 7521-7525.	3.2	36
123	Scalable Production of the Silicon–Tin Yin-Yang Hybrid Structure with Graphene Coating for High Performance Lithium-Ion Battery Anodes. ACS Applied Materials & Interfaces, 2017, 9, 15388-15393.	4.0	36
124	2D layered black arsenic-phosphorus materials: Synthesis, properties, and device applications. Nano Research, 2022, 15, 3737-3752.	5.8	36
125	Pitaya-like microspheres derived from Prussian blue analogues as ultralong-life anodes for lithium storage. Journal of Materials Chemistry A, 2016, 4, 15041-15048.	5.2	35
126	Recent Advances in Emerging Nonâ€Lithium Metal–Sulfur Batteries: A Review. Advanced Energy Materials, 2021, 11, 2100770.	10.2	34

#	Article	IF	CITATIONS
127	The Dual Role of Bridging Phenylene in an Extended Bipyridine System for High-Voltage and Stable Two-Electron Storage in Redox Flow Batteries. ACS Applied Materials & Interfaces, 2021, 13, 44174-44183.	4.0	34
128	Chelation-assisted formation of multi-yolk–shell Co ₄ N@carbon nanoboxes for self-discharge-suppressed high-performance Li–SeS ₂ batteries. Journal of Materials Chemistry A, 2019, 7, 20302-20309.	5.2	29
129	2D black TiO2-x nanoplate-decorated Ti3C2 MXene hybrids for ultrafast and elevated stable lithium storage. FlatChem, 2020, 20, 100152.	2.8	29
130	Single-Atom Metal Anchored Zr ₆ -Cluster-Porphyrin Framework Hollow Nanocapsules with Ultrahigh Active-Center Density for Electrocatalytic CO ₂ Reduction. Nano Letters, 2022, 22, 3340-3348.	4.5	29
131	Preferential Growth of Single-Walled Carbon Nanotubes on Silica Spheres by Chemical Vapor Deposition. Journal of Physical Chemistry B, 2005, 109, 6963-6967.	1.2	28
132	Cucurbit[8]uril-Based Water-Soluble Supramolecular Dendronized Polymer: Evidence from Single Polymer Chain Morphology and Force Spectroscopy. ACS Macro Letters, 2017, 6, 139-143.	2.3	27
133	Intermetallic SnSb nanodots embedded in carbon nanotubes reinforced nanofabric electrodes with high reversibility and rate capability for flexible Li-ion batteries. Nanoscale, 2019, 11, 13282-13288.	2.8	27
134	Improving the capacity and cycling-stability of Lithium–sulfur batteries using self-healing binders containing dynamic disulfide bonds. Sustainable Energy and Fuels, 2020, 4, 2760-2767.	2.5	27
135	Photodriven Catalytic Hydrogenation of CO ₂ to CH ₄ with Nearly 100% Selectivity over Ag ₂₅ Clusters. Nano Letters, 2021, 21, 8693-8700.	4.5	27
136	2D Arsenene and Arsenic Materials: Fundamental Properties, Preparation, and Applications. Small, 2022, 18, e2104556.	5.2	27
137	A high-performance oxygen evolution electrode of nanoporous Ni-based solid solution by simulating natural meteorites. Chemical Engineering Journal, 2021, 410, 128340.	6.6	26
138	Tuning the liquid-phase exfoliation of arsenic nanosheets by interaction with various solvents. Physical Chemistry Chemical Physics, 2019, 21, 12087-12090.	1.3	25
139	High gravity-assisted green synthesis of ZnO nanoparticles via Allium ursinum: Conjoining nanochemistry to neuroscience. Nano Express, 2020, 1, 020025.	1.2	25
140	Clusterâ€Bridgingâ€Coordinated Bimetallic Metalâ^'Organic Framework as Highâ€Performance Anode Material for Lithiumâ€Ion Storage. Small Structures, 2021, 2, 2100122.	6.9	25
141	Charge Transfer at Junctions of a Single Layer of Graphene and a Metallic Single Walled Carbon Nanotube. Small, 2013, 9, 1954-1963.	5.2	24
142	Different Dimensional Nanostructured Silicon Materials: From Synthesis Methodology to Application in Highâ€Energy Lithiumâ€Ion Batteries. Energy Technology, 2019, 7, 1900962.	1.8	24
143	The dealloying–lithiation/delithiation–realloying mechanism of a breithauptite (NiSb) nanocrystal embedded nanofabric anode for flexible Li-ion batteries. Nanoscale, 2019, 11, 8803-8811. 	2.8	24
144	SiOx/C-Ag nanosheets derived from Zintl phase CaSi2 via a facile redox reaction for high performance lithium storage. Nano Research, 2022, 15, 395-400.	5.8	23

#	Article	IF	CITATIONS
145	Ultrahigh secondary electron emission of carbon nanotubes. Applied Physics Letters, 2010, 96, .	1.5	22
146	Regulating the Alloying Degree and Electronic Structure of Pt–Au Nanoparticles for High-Efficiency Direct C ₂₊ Alcohol Fuel Cells. Chemistry of Materials, 2021, 33, 3767-3778.	3.2	22
147	Initial-anode-free aluminum ion batteries: In-depth monitoring and mechanism studies. Energy Storage Materials, 2022, 44, 461-468.	9.5	22
148	Inorganic hierarchical nanostructures induced by concentration difference and gradient. Nano Research, 2008, 1, 213-220.	5.8	21
149	Fluorinated quinone derived organosulfur copolymer cathodes for long-cycling, thermostable and flexible lithium–sulfur batteries. Chemical Engineering Journal, 2021, 424, 130316.	6.6	21
150	Rational design of carbon nanotube architectures for lithium–chalcogen batteries: Advances and perspectives. Energy Storage Materials, 2021, 42, 723-752.	9.5	20
151	Halogen-enabled rechargeable batteries: Current advances and future perspectives. Energy Storage Materials, 2022, 45, 332-369.	9.5	20
152	Alkaline soluble 1,3,5,7-tetrahydroxyanthraquinone with high reversibility as anolyte for aqueous redox flow battery. Journal of Power Sources, 2022, 524, 231001.	4.0	20
153	Pseudohalide substitution and potassium doping in FA0.98K0.02Pb(SCN)2I for high-stability hole-conductor-free perovskite solar cells. Journal of Power Sources, 2021, 494, 229781.	4.0	19
154	Nearâ€Infraredâ€Emissive Amphiphilic BODIPY Assemblies Manipulated by Chargeâ€Transfer Interaction: From Nanofibers to Nanorods and Nanodisks. Chemistry - an Asian Journal, 2017, 12, 3088-3095.	1.7	18
155	Ultrafast one-step synthesis of N and Ti3+ codoped TiO2 nanosheets via energetic material deflagration. Nano Research, 2018, 11, 4735-4743.	5.8	18
156	Inhibition of Phase Segregation in Cesium Lead Mixed-Halide Perovskites by B-Site Doping. IScience, 2020, 23, 101415.	1.9	18
157	Advances in Designing Au Nanoparticles for Catalytic Epoxidation of Propylene with H2 and O2. Catalysts, 2020, 10, 442.	1.6	18
158	Rapid CO2 exfoliation of Zintl phase CaSi2-derived ultrathin free-standing Si/SiOx/C nanosheets for high-performance lithium storage. Science China Materials, 2022, 65, 51-58.	3.5	18
159	Electron migration optimization through nanostructural control of hierarchical Fe3O4 based counter electrodes for high-performance dye-sensitized solar cells. Journal of Electroanalytical Chemistry, 2020, 869, 114214.	1.9	18
160	Bicontinuous Nanoporous Nitrogen/Carbon-Codoped FeCoNiMg Alloy as a High-Performance Electrode for the Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2022, 14, 784-793.	4.0	18
161	Site-Specific Deposition of Gold Nanoparticles on SWNTs. Journal of Physical Chemistry C, 2008, 112, 13437-13441.	1.5	17
162	Controlled growth and ion intercalation mechanism of monocrystalline niobium pentoxide nanotubes for advanced rechargeable aluminum-ion batteries. Nanoscale, 2020, 12, 12531-12540.	2.8	17

#	Article	IF	CITATIONS
163	Controllable growth and flexible optoelectronic devices of regularly-assembled Bi2S3 semiconductor nanowire bifurcated junctions and crosslinked networks. Nano Research, 2020, 13, 2226-2232.	5.8	16
164	Preparation and properties of CdS/Au composite nanorods and hollow Au tubes. Science Bulletin, 2010, 55, 921-926.	1.7	15
165	Ag24Au cluster decorated mesoporous Co3O4 for highly selective and efficient photothermal CO2 hydrogenation. Nano Research, 2022, 15, 4965-4972.	5.8	15
166	Hypersaline Aqueous Lithium-Ion Slurry Flow Batteries. ACS Energy Letters, 2022, 7, 862-870.	8.8	14
167	Direct growth of carbon nanotube junctions by a two-step chemical vapor deposition. Chemical Physics Letters, 2006, 432, 177-183.	1.2	12
168	Photoluminescence spectral imaging of ultralong single-walled carbon nanotubes: Micromanipulation-induced strain, rupture, and determination of handedness. Physical Review B, 2009, 80, .	1.1	12
169	Rapid construction of highly-dispersed cobalt nanoclusters embedded in hollow cubic carbon walls as an effective polysulfide promoter in high-energy lithium-sulfur batteries. Nano Research, 2022, 15, 5105-5113.	5.8	12
170	The preparation of Mg3Si2O5(OH)4 nanotubes under solvothermal conditions. Journal of Porous Materials, 2006, 13, 275-279.	1.3	11
171	Assembling Structure of Single-Walled Carbon Nanotube Thin Bundles. Journal of Physical Chemistry C, 2009, 113, 8132-8135.	1.5	11
172	Allâ€Inorganic Halide Perovskites for Optoelectronics: Progress and Prospects (Solar RRL 10â^•2017). Solar Rrl, 2017, 1, 1770138.	3.1	11
173	Wet Chemistry Vitrification and Metalâ€ŧo emiconductor Transition of 2D Gray Arsenene Nanoflakes. Advanced Functional Materials, 2021, 31, 2106529.	7.8	11
174	Electric-Field-Induced Ion Migration Behavior in Methylammonium Lead Iodide Perovskite. Journal of Physical Chemistry Letters, 2021, 12, 7106-7112.	2.1	10
175	A carbon-coated shuttle-like Fe ₂ O ₃ /Fe _{1â[~]x} S heterostructure derived from metal–organic frameworks with high pseudocapacitance for ultrafast lithium storage. Nanoscale Advances, 2020, 2, 5201-5208.	2.2	9
176	Seed-Mediated Growth of ZnO Nanorods on Multiwalled Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2008, 8, 4441-4446.	0.9	8
177	Energetic metal-organic frameworks deflagration enabled ultrafast low-temperature synthesis of ultra-light magnetic nanoparticles decorated high-lossy materials. Carbon, 2020, 165, 286-295.	5.4	8
178	Controlled radical double ring-opening polymerization of 2-methylene-1,4,6-trioxaspiro[4,4]nonane. Polymer International, 2000, 49, 1496-1499.	1.6	6
179	Controllable synthesis of nitrogen-doped carbon nanobubbles to realize high-performance lithium and sodium storage. Dalton Transactions, 2020, 49, 15712-15717.	1.6	6
180	Reasonable construction of Fe3O4/Ni@N-RGO nanoflowers as highly efficient counter electrodes for dye-sensitized solar cells. Sustainable Energy and Fuels, 2020, 4, 3604-3612.	2.5	6

#	Article	IF	CITATIONS
181	Spongy-like N, S-codoped ultrathin layered carbon assembly for realizing high performance sodium-ion batteries. FlatChem, 2021, 28, 100258.	2.8	6
182	Pointwise Plucking of Suspended Carbon Nanotubes. Nano Letters, 2012, 12, 3663-3667.	4.5	5
183	Correction to Highly Efficient Retention of Polysulfides in "Sea-Urchin―Like Carbon Nanotube/Nanopolyhedra Superstructures as Cathode Material for Ultralong-Life Lithium–Sulfur Batteries. Nano Letters, 2018, 18, 1553-1553.	4.5	5
184	Promoting Z-to-E Thermal Isomerization of Azobenzene Derivatives by Noncovalent Interaction with Phosphorene: Theoretical Prediction and Experimental Study. Journal of Physical Chemistry C, 2020, 124, 15961-15968.	1.5	3
185	Abnormal Raman Intensity of Single-Walled Carbon Nanotubes Grown on Silica Spheres. Journal of Physical Chemistry C, 2009, 113, 5075-5080.	1.5	2
186	2D arsenenes. Journal of Semiconductors, 2022, 43, 030201.	2.0	2
187	Nanolithography Based on Metalized DNA Templates for Graphene Patterning. Current Protocols in Chemical Biology, 2014, 6, 53-64.	1.7	1
188	Brush-electroplated rGO@MnO2 composite supported on carbon cloth for flexible high-performance supercapacitor electrodes. Journal of Materials Science: Materials in Electronics, 2022, 33, 13326-13338.	1.1	1
189	Carbon nanotube FETs decorated by gold nanoparticles: Electrical properties and mechanism. , 2010, , .		0
190	Terahertz and infrared conductivity of large-area graphene. , 2011, , .		0
191	Cyclotron resonance in graphene at ultrahigh magnetic fields. , 2011, , .		0
192	Arsenene: A Potential Therapeutic Agent for Acute Promyelocytic Leukaemia Cells by Acting on Nuclear Proteins. Angewandte Chemie, 2020, 132, 5189-5196.	1.6	0