List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1849865/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adsorption Forms of NO on Iridium-Doped Rhodium Clusters in the Gas Phase Revealed by Infrared Multiple Photon Dissociation Spectroscopy. Journal of Physical Chemistry A, 2022, 126, 36-43.	1.1	6
2	Newly-developed alternate on–off gas injection method for investigation of reduction of gas-phase cobalt oxide clusters by CO at high temperature. Chemical Physics Letters, 2022, 792, 139418.	1.2	0
3	Zooming in on the initial steps of catalytic NO reduction using metal clusters. Physical Chemistry Chemical Physics, 2022, 24, 7595-7610.	1.3	18
4	Dissociative adsorption of NO introduces flexibility in gas phase Rh6+ clusters leading to a rich isomeric distribution. Chemical Physics Letters, 2021, 780, 138937.	1.2	5
5	Structures of Nitrogen Oxides Attached to Anionic Gold Clusters Au ₄ [–] Revealed by Infrared Multiple Photon Dissociation Spectroscopy. Journal of Physical Chemistry A, 2021, 125, 9040-9047.	1.1	4
6	Decomposition of nitric oxide by rhodium cluster cations at high temperatures. Physical Chemistry Chemical Physics, 2021, 23, 26721-26728.	1.3	3
7	Electron Donation from Cu Atoms to Al Oxide Clusters upon Mixing Revealed by Thermal Desorption Spectrometry. Journal of Physical Chemistry C, 2020, 124, 659-667.	1.5	2
8	Substitution of O with a Single Au Atom as an Electron Acceptor in Al Oxide Clusters. Journal of Physical Chemistry A, 2020, 124, 7511-7517.	1.1	3
9	Oxophilicity as a Descriptor for NO Cleavage Efficiency over Group IX Metal Clusters. Journal of Physical Chemistry Letters, 2020, 11, 4408-4412.	2.1	21
10	Microcanonical Nucleation Theory for Anisotropic Materials Validated on Alumina Clusters. Journal of Physical Chemistry A, 2020, 124, 2328-2334.	1.1	1
11	Adsorption Forms of Water Molecules on Gas-Phase Platinum Clusters Pt ₃ ⁺ Studied by Vibrational Photodissociation Spectroscopy. Zeitschrift Fur Physikalische Chemie, 2019, 233, 881-894.	1.4	6
12	Improvement of Production and Isolation of Human Neuraminidase-1 <i>in Cellulo</i> Crystals. ACS Applied Bio Materials, 2019, 2, 4941-4952.	2.3	5
13	Liquid Phase Pulsed Laser Ablation on Pyrite. Chemistry Letters, 2019, 48, 712-714.	0.7	3
14	Adsorption and Desorption of NO and NO ₂ Molecules on Gold Cluster Anions Observed by Thermal Desorption Spectrometry. Journal of Physical Chemistry C, 2019, 123, 15575-15581.	1.5	10
15	Structures of Rhodium Oxide Cluster Cations Rh ₇ O _{<i>m</i>} ⁺ (<i>m</i> = 4–7, 12, 14) Revealed by Infrared Multiple Photon Dissociation Spectroscopy. Journal of Physical Chemistry C, 2019, 123, 5964-5971.	1.5	7
16	Effect of atomicity on the oxidation of cationic copper clusters studied using thermal desorption spectrometry. Physical Chemistry Chemical Physics, 2019, 21, 23129-23135.	1.3	2
17	Hydrophilicity and oxophilicity of the isolated CaMn ₄ O ₅ cationic cluster modeling inorganic core of the oxygen-evolving complex. Chemical Communications, 2019, 55, 14327-14330.	2.2	8
18	Tuning the Dissociative Action of Cationic Rh Clusters Toward NO by Substituting a Single Ta Atom. Journal of Physical Chemistry C, 2019, 123, 3476-3481.	1.5	19

#	Article	IF	CITATIONS
19	Thermal stability of iron–sulfur clusters. Physical Chemistry Chemical Physics, 2018, 20, 7781-7790.	1.3	8
20	Reduction Site in Ce n V m O k + Revealed by Gas Phase Thermal Desorption Spectrometry. Topics in Catalysis, 2018, 61, 42-48.	1.3	6
21	Stability and Effect of Hydration on Calcium Oxide Cluster Ions, Ca <i>n</i> O <i>m</i> +, in the Gas Phase. Bulletin of the Chemical Society of Japan, 2018, 91, 1530-1536.	2.0	3
22	Adsorption of Multiple NO Molecules on Rh _{<i>n</i>} ⁺ (<i>n</i> = 6, 7) Investigated by Infrared Multiple Photon Dissociation Spectroscopy. Journal of Physical Chemistry C, 2018, 122, 22884-22891.	1.5	19
23	Desorption of Oxygen from Cationic Niobium Oxide Clusters Revealed by Gas Phase Thermal Desorption Spectrometry and Density Functional Theory Calculations. Journal of Physical Chemistry A, 2017, 121, 2079-2085.	1.1	12
24	Oxygen Release from Cationic Niobium–Vanadium Oxide Clusters, Nb _{<i>n</i>} V _{<i>m</i>} O _{<i>k</i>} ⁺ , Revealed by Gas Phase Thermal Desorption Spectrometry and Density Functional Theory Calculations. Journal of Physical Chemistry A, 2017, 121, 3864-3870.	1.1	7
25	Catalytic Decomposition of NO by Cationic Platinum Oxide Cluster Pt ₃ O ₄ ⁺ . Journal of Physical Chemistry Letters, 2017, 8, 2143-2147.	2.1	8
26	lsomers of Anionic Gold Oxide Clusters, Au _{<i>n</i>} O ₂ [–] , Investigated by Thermal Desorption Spectrometry. Journal of Physical Chemistry C, 2017, 121, 8498-8503.	1.5	2
27	Adsorption Forms of NO on Rh _{<i>n</i>} ⁺ (<i>n</i> = 6–16) Revealed by Infrared Multiple Photon Dissociation Spectroscopy. Journal of Physical Chemistry C, 2017, 121, 27417-27426.	1.5	21
28	Thermal Analysis of Hydrated Gold Cluster Cations in the Gas Phase. Journal of Physical Chemistry C, 2017, 121, 16291-16299.	1.5	7
29	Microcrystal delivery by pulsed liquid droplet for serial femtosecond crystallography. Acta Crystallographica Section D: Structural Biology, 2016, 72, 520-523.	1.1	41
30	Induction of protein crystallization by platinum nanoparticles. Chemical Physics Letters, 2016, 647, 181-184.	1.2	8
31	Catalytic reactions of gas phase zirconium oxide clusters with NO and CO revealed by post heating. Chemical Physics Letters, 2016, 660, 261-265.	1.2	6
32	Desorption Energy of Oxygen Molecule from Anionic Gold Oxide Clusters, Au _{<i>n</i>} O ₂ [–] , Using Thermal Desorption Spectrometry. Journal of Physical Chemistry C, 2016, 120, 23069-23073.	1.5	20
33	Gold Atoms Supported on Gas-Phase Cerium Oxide Cluster Ions: Stable Stoichiometry and Reactivity with CO. Journal of Physical Chemistry A, 2016, 120, 7624-7633.	1.1	33
34	Geometrical Structures of Partially Oxidized Rhodium Cluster Cations, Rh ₆ O _{<i>m</i>} < ⁺ (<i>m</i> = 4, 5, 6), Revealed by Infrared Multiple Photon Dissociation Spectroscopy. Journal of Physical Chemistry A, 2016, 120, 8599-8605.	1.1	11
35	Nitrogen Molecule Adsorption on Cationic Tantalum Clusters and Rhodium Clusters and Desorption from Their Nitride Clusters Studied by Thermal Desorption Spectrometry. Journal of Physical Chemistry A, 2016, 120, 4089-4095.	1.1	50
36	Rhodium Oxide Cluster Ions Studied by Thermal Desorption Spectrometry. Journal of Physical Chemistry A, 2016, 120, 356-363.	1.1	21

#	Article	IF	CITATIONS
37	Thermal desorption of oxygen from near-stoichiometric cationic vanadium oxide clusters. Chemical Physics Letters, 2016, 651, 24-27.	1.2	13
38	Reactivity Control of Rhodium Cluster Ions by Alloying with Tantalum Atoms. Journal of Physical Chemistry A, 2016, 120, 861-867.	1.1	22
39	Oxidation of Nitric Oxide on Gas-Phase Cerium Oxide Clusters via Reactant Adsorption and Product Desorption Processes. Journal of Physical Chemistry A, 2015, 119, 10255-10263.	1.1	33
40	Release of Oxygen from Copper Oxide Cluster Ions by Heat and by Reaction with NO. Journal of Physical Chemistry C, 2015, 119, 11106-11113.	1.5	14
41	Stable Stoichiometry of Gas-Phase Cerium Oxide Cluster Ions and Their Reactions with CO. Journal of Physical Chemistry A, 2015, 119, 1813-1819.	1.1	42
42	Release of Oxygen from Palladium Oxide Cluster Ions by Heat. Journal of Physical Chemistry A, 2015, 119, 8055-8061.	1.1	11
43	Thermal Desorption and Reaction of NO Adsorbed on Rhodium Cluster Ions Studied by Thermal Desorption Spectroscopy. Journal of Physical Chemistry A, 2015, 119, 8461-8468.	1.1	30
44	Reactivity of Oxygen Deficient Cerium Oxide Clusters with Small Gaseous Molecules. Journal of Physical Chemistry A, 2015, 119, 5545-5552.	1.1	37
45	Stable Stoichiometry of Gas-Phase Manganese Oxide Cluster Ions Revealed by Temperature-Programmed Desorption. Journal of Physical Chemistry A, 2015, 119, 8433-8442.	1.1	17
46	Adsorption and Desorption of Hydrogen by Gas-Phase Palladium Clusters Revealed by In Situ Thermal Desorption Spectroscopy. Journal of Physical Chemistry A, 2015, 119, 6766-6772.	1.1	18
47	Dissociation energy for O2 release from gas-phase iron oxide clusters measured by temperature-programmed desorption experiments. Chemical Physics Letters, 2015, 625, 104-109.	1.2	35
48	Thermal Desorption Spectroscopy Study of the Adsorption and Reduction of NO by Cobalt Cluster Ions under Thermal Equilibrium Conditions at 300 K. Journal of Physical Chemistry A, 2015, 119, 9573-9580.	1.1	13
49	Formation of wide bandgap cerium oxide nanoparticles by laser ablation in aqueous solution. Chemical Physics Letters, 2014, 599, 110-115.	1.2	27
50	Self-assembly of positively charged platinum nanoparticles in lysozyme crystal. Chemical Physics Letters, 2014, 604, 110-115.	1.2	6
51	Thermally and Chemically Stable Mixed Valence Copper Oxide Cluster Ions Revealed by Post Heating. Journal of Physical Chemistry A, 2013, 117, 10145-10150.	1.1	27
52	Reactions of Neutral Platinum Clusters with N ₂ O and CO. Journal of Physical Chemistry A, 2013, 117, 12175-12183.	1.1	30
53	Oxidation of CO by Nickel Oxide Clusters Revealed by Post Heating. Journal of Physical Chemistry A, 2013, 117, 3260-3265.	1.1	34
54	Self-assembly of gold nanoparticles in protein crystal. Chemical Physics Letters, 2011, 504, 175-179.	1.2	12

#	Article	IF	CITATIONS
55	Selective Degradation of Proteins by Laser Irradiation onto Gold Nanoparticles in Solution. Journal of Physical Chemistry C, 2009, 113, 5027-5030.	1.5	27
56	Estimation of Surface Oxide on Surfactant-Free Gold Nanoparticles Laser-Ablated in Water. Journal of Physical Chemistry C, 2007, 111, 17221-17226.	1.5	152
57	Degradation of Protein in Nanoplasma Generated around Gold Nanoparticles in Solution by Laser Irradiation. Journal of Physical Chemistry B, 2006, 110, 2393-2397.	1.2	39
58	Formation of Au(III)-DNA Coordinate Complex by Laser Ablation of Au Nanoparticles in Solution. Nucleosides, Nucleotides and Nucleic Acids, 2005, 24, 1215-1225.	0.4	11
59	Formation and Size Control of Silver Nanoparticles by Laser Ablation in Aqueous Solution. Journal of Physical Chemistry B, 2000, 104, 9111-9117.	1.2	760
60	Structure and Stability of Silver Nanoparticles in Aqueous Solution Produced by Laser Ablation. Journal of Physical Chemistry B, 2000, 104, 8333-8337.	1.2	490
61	Manipulation of protein crystals using a magnetic field by assembling Fe x O y nanoparticles. Bioinspired, Biomimetic and Nanobiomaterials, 0, , 1-7.	0.7	5